File size: 7,283 Bytes
046c2b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f54f28
 
 
 
 
 
 
046c2b1
2f54f28
1c50673
 
2f54f28
1c50673
2f54f28
1c50673
 
98156c2
1c50673
2f54f28
 
 
 
 
 
 
 
3bdfcbc
 
2f54f28
1c50673
2f54f28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bdfcbc
b3d14b2
9b700a4
2f54f28
 
 
 
 
 
1c50673
2f54f28
1c50673
2f54f28
 
 
 
 
 
1c50673
2f54f28
 
1c50673
2f54f28
1c50673
2f54f28
 
1c50673
2f54f28
1c50673
 
2f54f28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71c5789
2f54f28
71c5789
2f54f28
 
71c5789
2f54f28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c50673
2f54f28
 
 
 
 
1c50673
 
2f54f28
 
1c50673
046c2b1
1c50673
25a5cc8
beebab3
 
1c50673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7a5199
4710fcc
beebab3
 
b7a5199
 
4710fcc
 
beebab3
4710fcc
 
25a5cc8
 
b7a5199
25a5cc8
 
b7a5199
25a5cc8
b7a5199
 
25a5cc8
 
 
 
 
4710fcc
10a5181
25a5cc8
b7a5199
10a5181
1c50673
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import gradio as gr
from nemo.collections.asr.models import ASRModel

# Load the NeMo ASR model
model = ASRModel.from_pretrained("nvidia/canary-1b")
model.eval()

def transcribe(audio):
    if audio is None:
        raise gr.InterfaceError("Please provide some input audio: either upload an audio file or use the microphone")

    # Perform speech recognition
    transcription = model.transcribe([audio])

    return transcription[0]

audio_input = gr.components.Audio()

iface = gr.Interface(transcribe, audio_input, "text", title="ASR with NeMo Canary Model")
iface.launch()

'''
import gradio as gr
from transformers import pipeline
# Load pipelines for Canary ASR, LLama3 QA, and VITS TTS
asr_pipeline = pipeline("automatic-speech-recognition", model="nvidia/canary-1b", device=0)
qa_pipeline = pipeline("question-answering", model="LLAMA/llama3-base-qa", tokenizer="LLAMA/llama3-base-qa")
tts_pipeline = pipeline("text-to-speech", model="patrickvonplaten/vits-large", device=0)


import gradio as gr
import json
import librosa
import os
import soundfile as sf
import tempfile
import uuid
from transformers import pipeline

import torch

from nemo.collections.asr.models import ASRModel
from nemo.collections.asr.parts.utils.streaming_utils import FrameBatchMultiTaskAED
from nemo.collections.asr.parts.utils.transcribe_utils import get_buffered_pred_feat_multitaskAED

SAMPLE_RATE = 16000 # Hz
MAX_AUDIO_SECS = 30 # wont try to transcribe if longer than this
src_lang = "en"
tgt_lang = "en"
pnc="no"

model = ASRModel.from_pretrained("nvidia/canary-1b")
model.eval()

# make sure beam size always 1 for consistency
model.change_decoding_strategy(None)
decoding_cfg = model.cfg.decoding
decoding_cfg.beam.beam_size = 1
model.change_decoding_strategy(decoding_cfg)

# setup for buffered inference
model.cfg.preprocessor.dither = 0.0
model.cfg.preprocessor.pad_to = 0

feature_stride = model.cfg.preprocessor['window_stride']
model_stride_in_secs = feature_stride * 8 # 8 = model stride, which is 8 for FastConformer

frame_asr = FrameBatchMultiTaskAED(
	asr_model=model,
	frame_len=40.0,
	total_buffer=40.0,
	batch_size=16,
)

amp_dtype = torch.float16


def convert_audio(audio_filepath, tmpdir, utt_id):
	"""
	Convert all files to monochannel 16 kHz wav files.
	Do not convert and raise error if audio too long.
	Returns output filename and duration.
	"""
	data, sr = librosa.load(audio_filepath, sr=None, mono=True)

	duration = librosa.get_duration(y=data, sr=sr)

	if duration > MAX_AUDIO_SECS:
		raise gr.Error(
			f"This demo can transcribe up to {MAX_AUDIO_MINUTES} minutes of audio. "
			"If you wish, you may trim the audio using the Audio viewer in Step 1 "
			"(click on the scissors icon to start trimming audio)."
		)

	if sr != SAMPLE_RATE:
		data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE)

	out_filename = os.path.join(tmpdir, utt_id + '.wav')

	# save output audio
	sf.write(out_filename, data, SAMPLE_RATE)

	return out_filename, duration


def transcribe(audio_filepath, src_lang, tgt_lang, pnc):

	if audio_filepath is None:
		raise gr.Error("Please provide some input audio: either upload an audio file or use the microphone")
	
	utt_id = uuid.uuid4()
	with tempfile.TemporaryDirectory() as tmpdir:
		converted_audio_filepath, duration = convert_audio(audio_filepath, tmpdir, str(utt_id))

		# make manifest file and save
		manifest_data = {
			"audio_filepath": converted_audio_filepath,
			"source_lang": src_lang,
			"target_lang": tgt_lang,
			"taskname": taskname,
			"pnc": pnc,
			"answer": "predict",
			"duration": str(duration),
		}

		manifest_filepath = os.path.join(tmpdir, f'{utt_id}.json')

		with open(manifest_filepath, 'w') as fout:
			line = json.dumps(manifest_data)
			fout.write(line + '\n')

		# call transcribe, passing in manifest filepath
		if duration < 40:
			output_text = model.transcribe(manifest_filepath)[0]
		else: # do buffered inference
			with torch.cuda.amp.autocast(dtype=amp_dtype): # TODO: make it work if no cuda
				with torch.no_grad():
					hyps = get_buffered_pred_feat_multitaskAED(
						frame_asr,
						model.cfg.preprocessor,
						model_stride_in_secs,
						model.device,
						manifest=manifest_filepath,
						filepaths=None,
					)

					output_text = hyps[0].text

	return output_text



with gr.Blocks(
	title="NeMo Canary Model",
	css="""
		textarea { font-size: 18px;}
		#model_output_text_box span {
			font-size: 18px;
			font-weight: bold;
		}
	""",
	theme=gr.themes.Default(text_size=gr.themes.sizes.text_lg) # make text slightly bigger (default is text_md )
) as demo:

	gr.HTML("<h1 style='text-align: center'>NeMo Canary model: Transcribe & Translate audio</h1>")

	with gr.Row():
		with gr.Column():
			gr.HTML(
				"<p><b>Step 1:</b> Record with your microphone.</p>"

				
			)

			audio_file = gr.Audio(sources=["microphone"], type="filepath")

			
		with gr.Column():

			gr.HTML("<p><b>Step 3:</b> Run the model.</p>")

			go_button = gr.Button(
				value="Run model",
				variant="primary", # make "primary" so it stands out (default is "secondary")
			)

			model_output_text_box = gr.Textbox(
				label="Model Output",
				elem_id="model_output_text_box",
			)

	with gr.Row():

		gr.HTML(
			"<p style='text-align: center'>"
				"🐀 <a href='https://huggingface.co/nvidia/canary-1b' target='_blank'>Canary model</a> | "
				"πŸ§‘β€πŸ’» <a href='https://github.com/NVIDIA/NeMo' target='_blank'>NeMo Repository</a>"
			"</p>"
		)

	go_button.click(
		fn=transcribe, 
		inputs = [audio_file],
		outputs = [model_output_text_box]
	)


demo.queue()
demo.launch()




# Function to capture audio using Canary ASR
def capture_audio():
    utt_id = uuid.uuid4()
	with tempfile.TemporaryDirectory() as tmpdir:
		converted_audio_filepath, duration = convert_audio(audio_filepath, tmpdir, str(utt_id))
        
    manifest_data = {
			"audio_filepath": converted_audio_filepath,
			"source_lang": "en",
			"target_lang": "en",
			"taskname": taskname,
			"pnc": pnc,
			"answer": "predict",
			"duration": 10,
		}

		manifest_filepath = os.path.join(tmpdir, f'{utt_id}.json')

    print("Listening for cue words...")
    while True:
        audio_input = asr_pipeline(None)[0]['input_values']
        transcript = asr_pipeline(audio_input)[0]['transcription']
        if "hey canary" in transcript.lower():
            print("Cue word detected!")
            break
    print("Listening...")
    return audio_input

# AI assistant function
def ai_assistant(audio_input):
    # Perform automatic speech recognition (ASR)
    transcript = asr_pipeline(audio_input)[0]['transcription']

    # Perform question answering (QA)
    qa_result = qa_pipeline(question=transcript, context="Insert your context here")

    # Convert the QA result to speech using text-to-speech (TTS)
    tts_output = tts_pipeline(qa_result['answer'])

    return tts_output[0]['audio']

if __name__ == "__main__":
    # Create a Gradio interface
    gr.Interface(ai_assistant,
                 inputs=gr.inputs.Audio(capture=capture_audio, label="Speak Here"),
                 outputs=gr.outputs.Audio(type="audio", label="Assistant's Response"),
                 title="AI Assistant",
                 description="An AI Assistant that answers questions based on your speech input.").launch()
'''