File size: 1,457 Bytes
ea225b5 25a5cc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import gradio as gr
from transformers import pipeline
# Create pipelines for ASR, QA, and TTS
asr_pipeline = pipeline("automatic-speech-recognition", model="canary/asr-small-librispeech", device=0) # Adjust device based on your hardware
qa_pipeline = pipeline("question-answering", model="LLAMA/llama3-base-qa", tokenizer="LLAMA/llama3-base-qa")
tts_pipeline = pipeline("text-to-speech", model="patrickvonplaten/vits-large", device=0) # Adjust device based on your hardware
def ai_assistant(audio_input):
# Perform automatic speech recognition (ASR)
transcribed_text = asr_pipeline(audio_input)[0]['transcription']
# Perform question answering (QA)
question = transcribed_text
context = "Insert your context here" # Provide the context for the question answering model
answer = qa_pipeline(question=question, context=context)
# Convert the answer to speech using text-to-speech (TTS)
tts_output = tts_pipeline(answer['answer'])
# Output the speech
return tts_output[0]['audio']
if __name__ == "__main__":
# Create a Gradio interface
gr.Interface(ai_assistant,
inputs=gr.inputs.Audio(source="microphone", type="microphone", label="Speak Here"),
outputs=gr.outputs.Audio(type="audio", label="Assistant's Response"),
title="AI Assistant",
description="An AI Assistant that answers questions based on your speech input.")
.launch() |