File size: 2,300 Bytes
ea225b5
 
25a5cc8
 
 
 
 
 
beebab3
 
4710fcc
beebab3
 
 
 
4710fcc
beebab3
4710fcc
 
beebab3
4710fcc
 
25a5cc8
 
 
 
 
 
4710fcc
beebab3
25a5cc8
 
 
 
 
 
 
 
 
 
4710fcc
 
25a5cc8
4710fcc
beebab3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import gradio as gr
from transformers import pipeline

# Create pipelines for ASR, QA, and TTS
asr_pipeline = pipeline("automatic-speech-recognition", model="canary/asr-small-librispeech", device=0)  # Adjust device based on your hardware
qa_pipeline = pipeline("question-answering", model="LLAMA/llama3-base-qa", tokenizer="LLAMA/llama3-base-qa")
tts_pipeline = pipeline("text-to-speech", model="patrickvonplaten/vits-large", device=0)  # Adjust device based on your hardware

# Function to capture audio using Canary ASR
def capture_audio():
    while True:
        print("Say, 'Hey, Alex'")
        # Use Canary ASR pipeline to capture audio
        audio_input = asr_pipeline(None)[0]['input_values']
        transcript = asr_pipeline(audio_input)[0]['transcription']
        if "hey alex" in transcript.lower():
            print("I hear you!")
            break
    print("Listening...")
    return audio_input

# AI assistant function
def ai_assistant(audio_input):
    # Perform automatic speech recognition (ASR)
    transcribed_text = asr_pipeline(audio_input)[0]['transcription']

    # Perform question answering (QA)
    question = transcribed_text
    # Provide the context for the question answering model
    context = "Friends is a popular American sitcom that aired from 1994 to 2004. The show revolves around a group of six friends living in New York City—Ross, Rachel, Chandler, Monica, Joey, and Phoebe—as they navigate various aspects of their personal and professional lives. Friends is known for its humor, memorable characters, and iconic catchphrases, making it a beloved and enduring cultural phenomenon."
    answer = qa_pipeline(question=question, context=context)

    # Convert the answer to speech using text-to-speech (TTS)
    tts_output = tts_pipeline(answer['answer'])

    # Output the speech
    return tts_output[0]['audio']

if __name__ == "__main__":
    # Create a Gradio interface
    gr.Interface(ai_assistant,
                 inputs=gr.inputs.Audio(capture= capture_audio, label="Speak Here"),
                 outputs=gr.outputs.Audio(type="audio", label="Assistant's Response"),
                 title="Alexander the Great AI Assistant",
                 description="An AI Assistant. Say 'Hey Alex' to speak to Alexander").launch(inbrowser=True)