my-alexa / app.py
jiuuee's picture
Update app.py
046c2b1 verified
raw
history blame
7.28 kB
import gradio as gr
from nemo.collections.asr.models import ASRModel
# Load the NeMo ASR model
model = ASRModel.from_pretrained("nvidia/canary-1b")
model.eval()
def transcribe(audio):
if audio is None:
raise gr.InterfaceError("Please provide some input audio: either upload an audio file or use the microphone")
# Perform speech recognition
transcription = model.transcribe([audio])
return transcription[0]
audio_input = gr.components.Audio()
iface = gr.Interface(transcribe, audio_input, "text", title="ASR with NeMo Canary Model")
iface.launch()
'''
import gradio as gr
from transformers import pipeline
# Load pipelines for Canary ASR, LLama3 QA, and VITS TTS
asr_pipeline = pipeline("automatic-speech-recognition", model="nvidia/canary-1b", device=0)
qa_pipeline = pipeline("question-answering", model="LLAMA/llama3-base-qa", tokenizer="LLAMA/llama3-base-qa")
tts_pipeline = pipeline("text-to-speech", model="patrickvonplaten/vits-large", device=0)
import gradio as gr
import json
import librosa
import os
import soundfile as sf
import tempfile
import uuid
from transformers import pipeline
import torch
from nemo.collections.asr.models import ASRModel
from nemo.collections.asr.parts.utils.streaming_utils import FrameBatchMultiTaskAED
from nemo.collections.asr.parts.utils.transcribe_utils import get_buffered_pred_feat_multitaskAED
SAMPLE_RATE = 16000 # Hz
MAX_AUDIO_SECS = 30 # wont try to transcribe if longer than this
src_lang = "en"
tgt_lang = "en"
pnc="no"
model = ASRModel.from_pretrained("nvidia/canary-1b")
model.eval()
# make sure beam size always 1 for consistency
model.change_decoding_strategy(None)
decoding_cfg = model.cfg.decoding
decoding_cfg.beam.beam_size = 1
model.change_decoding_strategy(decoding_cfg)
# setup for buffered inference
model.cfg.preprocessor.dither = 0.0
model.cfg.preprocessor.pad_to = 0
feature_stride = model.cfg.preprocessor['window_stride']
model_stride_in_secs = feature_stride * 8 # 8 = model stride, which is 8 for FastConformer
frame_asr = FrameBatchMultiTaskAED(
asr_model=model,
frame_len=40.0,
total_buffer=40.0,
batch_size=16,
)
amp_dtype = torch.float16
def convert_audio(audio_filepath, tmpdir, utt_id):
"""
Convert all files to monochannel 16 kHz wav files.
Do not convert and raise error if audio too long.
Returns output filename and duration.
"""
data, sr = librosa.load(audio_filepath, sr=None, mono=True)
duration = librosa.get_duration(y=data, sr=sr)
if duration > MAX_AUDIO_SECS:
raise gr.Error(
f"This demo can transcribe up to {MAX_AUDIO_MINUTES} minutes of audio. "
"If you wish, you may trim the audio using the Audio viewer in Step 1 "
"(click on the scissors icon to start trimming audio)."
)
if sr != SAMPLE_RATE:
data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE)
out_filename = os.path.join(tmpdir, utt_id + '.wav')
# save output audio
sf.write(out_filename, data, SAMPLE_RATE)
return out_filename, duration
def transcribe(audio_filepath, src_lang, tgt_lang, pnc):
if audio_filepath is None:
raise gr.Error("Please provide some input audio: either upload an audio file or use the microphone")
utt_id = uuid.uuid4()
with tempfile.TemporaryDirectory() as tmpdir:
converted_audio_filepath, duration = convert_audio(audio_filepath, tmpdir, str(utt_id))
# make manifest file and save
manifest_data = {
"audio_filepath": converted_audio_filepath,
"source_lang": src_lang,
"target_lang": tgt_lang,
"taskname": taskname,
"pnc": pnc,
"answer": "predict",
"duration": str(duration),
}
manifest_filepath = os.path.join(tmpdir, f'{utt_id}.json')
with open(manifest_filepath, 'w') as fout:
line = json.dumps(manifest_data)
fout.write(line + '\n')
# call transcribe, passing in manifest filepath
if duration < 40:
output_text = model.transcribe(manifest_filepath)[0]
else: # do buffered inference
with torch.cuda.amp.autocast(dtype=amp_dtype): # TODO: make it work if no cuda
with torch.no_grad():
hyps = get_buffered_pred_feat_multitaskAED(
frame_asr,
model.cfg.preprocessor,
model_stride_in_secs,
model.device,
manifest=manifest_filepath,
filepaths=None,
)
output_text = hyps[0].text
return output_text
with gr.Blocks(
title="NeMo Canary Model",
css="""
textarea { font-size: 18px;}
#model_output_text_box span {
font-size: 18px;
font-weight: bold;
}
""",
theme=gr.themes.Default(text_size=gr.themes.sizes.text_lg) # make text slightly bigger (default is text_md )
) as demo:
gr.HTML("<h1 style='text-align: center'>NeMo Canary model: Transcribe & Translate audio</h1>")
with gr.Row():
with gr.Column():
gr.HTML(
"<p><b>Step 1:</b> Record with your microphone.</p>"
)
audio_file = gr.Audio(sources=["microphone"], type="filepath")
with gr.Column():
gr.HTML("<p><b>Step 3:</b> Run the model.</p>")
go_button = gr.Button(
value="Run model",
variant="primary", # make "primary" so it stands out (default is "secondary")
)
model_output_text_box = gr.Textbox(
label="Model Output",
elem_id="model_output_text_box",
)
with gr.Row():
gr.HTML(
"<p style='text-align: center'>"
"🐀 <a href='https://huggingface.co/nvidia/canary-1b' target='_blank'>Canary model</a> | "
"πŸ§‘β€πŸ’» <a href='https://github.com/NVIDIA/NeMo' target='_blank'>NeMo Repository</a>"
"</p>"
)
go_button.click(
fn=transcribe,
inputs = [audio_file],
outputs = [model_output_text_box]
)
demo.queue()
demo.launch()
# Function to capture audio using Canary ASR
def capture_audio():
utt_id = uuid.uuid4()
with tempfile.TemporaryDirectory() as tmpdir:
converted_audio_filepath, duration = convert_audio(audio_filepath, tmpdir, str(utt_id))
manifest_data = {
"audio_filepath": converted_audio_filepath,
"source_lang": "en",
"target_lang": "en",
"taskname": taskname,
"pnc": pnc,
"answer": "predict",
"duration": 10,
}
manifest_filepath = os.path.join(tmpdir, f'{utt_id}.json')
print("Listening for cue words...")
while True:
audio_input = asr_pipeline(None)[0]['input_values']
transcript = asr_pipeline(audio_input)[0]['transcription']
if "hey canary" in transcript.lower():
print("Cue word detected!")
break
print("Listening...")
return audio_input
# AI assistant function
def ai_assistant(audio_input):
# Perform automatic speech recognition (ASR)
transcript = asr_pipeline(audio_input)[0]['transcription']
# Perform question answering (QA)
qa_result = qa_pipeline(question=transcript, context="Insert your context here")
# Convert the QA result to speech using text-to-speech (TTS)
tts_output = tts_pipeline(qa_result['answer'])
return tts_output[0]['audio']
if __name__ == "__main__":
# Create a Gradio interface
gr.Interface(ai_assistant,
inputs=gr.inputs.Audio(capture=capture_audio, label="Speak Here"),
outputs=gr.outputs.Audio(type="audio", label="Assistant's Response"),
title="AI Assistant",
description="An AI Assistant that answers questions based on your speech input.").launch()
'''