my-alexa / app.py
jiuuee's picture
Update app.py
10a5181 verified
raw
history blame
1.66 kB
import gradio as gr
from transformers import pipeline
# Load pipelines for Canary ASR, LLama3 QA, and VITS TTS
asr_pipeline = pipeline("automatic-speech-recognition", model="nvidia/canary-1b", device=0)
qa_pipeline = pipeline("question-answering", model="LLAMA/llama3-base-qa", tokenizer="LLAMA/llama3-base-qa")
tts_pipeline = pipeline("text-to-speech", model="patrickvonplaten/vits-large", device=0)
# Function to capture audio using Canary ASR
def capture_audio():
print("Listening for cue words...")
while True:
audio_input = asr_pipeline(None)[0]['input_values']
transcript = asr_pipeline(audio_input)[0]['transcription']
if "hey canary" in transcript.lower():
print("Cue word detected!")
break
print("Listening...")
return audio_input
# AI assistant function
def ai_assistant(audio_input):
# Perform automatic speech recognition (ASR)
transcript = asr_pipeline(audio_input)[0]['transcription']
# Perform question answering (QA)
qa_result = qa_pipeline(question=transcript, context="Insert your context here")
# Convert the QA result to speech using text-to-speech (TTS)
tts_output = tts_pipeline(qa_result['answer'])
return tts_output[0]['audio']
if __name__ == "__main__":
# Create a Gradio interface
gr.Interface(ai_assistant,
inputs=gr.inputs.Audio(capture=capture_audio, label="Speak Here"),
outputs=gr.outputs.Audio(type="audio", label="Assistant's Response"),
title="AI Assistant",
description="An AI Assistant that answers questions based on your speech input.").launch()