Update app.py
Browse files
app.py
CHANGED
@@ -14,249 +14,8 @@ def transcribe(audio):
|
|
14 |
|
15 |
return transcription[0]
|
16 |
|
17 |
-
audio_input = gr.
|
18 |
|
19 |
iface = gr.Interface(transcribe, audio_input, "text", title="ASR with NeMo Canary Model")
|
20 |
iface.launch()
|
21 |
|
22 |
-
'''
|
23 |
-
import gradio as gr
|
24 |
-
from transformers import pipeline
|
25 |
-
# Load pipelines for Canary ASR, LLama3 QA, and VITS TTS
|
26 |
-
asr_pipeline = pipeline("automatic-speech-recognition", model="nvidia/canary-1b", device=0)
|
27 |
-
qa_pipeline = pipeline("question-answering", model="LLAMA/llama3-base-qa", tokenizer="LLAMA/llama3-base-qa")
|
28 |
-
tts_pipeline = pipeline("text-to-speech", model="patrickvonplaten/vits-large", device=0)
|
29 |
-
|
30 |
-
|
31 |
-
import gradio as gr
|
32 |
-
import json
|
33 |
-
import librosa
|
34 |
-
import os
|
35 |
-
import soundfile as sf
|
36 |
-
import tempfile
|
37 |
-
import uuid
|
38 |
-
from transformers import pipeline
|
39 |
-
|
40 |
-
import torch
|
41 |
-
|
42 |
-
from nemo.collections.asr.models import ASRModel
|
43 |
-
from nemo.collections.asr.parts.utils.streaming_utils import FrameBatchMultiTaskAED
|
44 |
-
from nemo.collections.asr.parts.utils.transcribe_utils import get_buffered_pred_feat_multitaskAED
|
45 |
-
|
46 |
-
SAMPLE_RATE = 16000 # Hz
|
47 |
-
MAX_AUDIO_SECS = 30 # wont try to transcribe if longer than this
|
48 |
-
src_lang = "en"
|
49 |
-
tgt_lang = "en"
|
50 |
-
pnc="no"
|
51 |
-
|
52 |
-
model = ASRModel.from_pretrained("nvidia/canary-1b")
|
53 |
-
model.eval()
|
54 |
-
|
55 |
-
# make sure beam size always 1 for consistency
|
56 |
-
model.change_decoding_strategy(None)
|
57 |
-
decoding_cfg = model.cfg.decoding
|
58 |
-
decoding_cfg.beam.beam_size = 1
|
59 |
-
model.change_decoding_strategy(decoding_cfg)
|
60 |
-
|
61 |
-
# setup for buffered inference
|
62 |
-
model.cfg.preprocessor.dither = 0.0
|
63 |
-
model.cfg.preprocessor.pad_to = 0
|
64 |
-
|
65 |
-
feature_stride = model.cfg.preprocessor['window_stride']
|
66 |
-
model_stride_in_secs = feature_stride * 8 # 8 = model stride, which is 8 for FastConformer
|
67 |
-
|
68 |
-
frame_asr = FrameBatchMultiTaskAED(
|
69 |
-
asr_model=model,
|
70 |
-
frame_len=40.0,
|
71 |
-
total_buffer=40.0,
|
72 |
-
batch_size=16,
|
73 |
-
)
|
74 |
-
|
75 |
-
amp_dtype = torch.float16
|
76 |
-
|
77 |
-
|
78 |
-
def convert_audio(audio_filepath, tmpdir, utt_id):
|
79 |
-
"""
|
80 |
-
Convert all files to monochannel 16 kHz wav files.
|
81 |
-
Do not convert and raise error if audio too long.
|
82 |
-
Returns output filename and duration.
|
83 |
-
"""
|
84 |
-
data, sr = librosa.load(audio_filepath, sr=None, mono=True)
|
85 |
-
|
86 |
-
duration = librosa.get_duration(y=data, sr=sr)
|
87 |
-
|
88 |
-
if duration > MAX_AUDIO_SECS:
|
89 |
-
raise gr.Error(
|
90 |
-
f"This demo can transcribe up to {MAX_AUDIO_MINUTES} minutes of audio. "
|
91 |
-
"If you wish, you may trim the audio using the Audio viewer in Step 1 "
|
92 |
-
"(click on the scissors icon to start trimming audio)."
|
93 |
-
)
|
94 |
-
|
95 |
-
if sr != SAMPLE_RATE:
|
96 |
-
data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE)
|
97 |
-
|
98 |
-
out_filename = os.path.join(tmpdir, utt_id + '.wav')
|
99 |
-
|
100 |
-
# save output audio
|
101 |
-
sf.write(out_filename, data, SAMPLE_RATE)
|
102 |
-
|
103 |
-
return out_filename, duration
|
104 |
-
|
105 |
-
|
106 |
-
def transcribe(audio_filepath, src_lang, tgt_lang, pnc):
|
107 |
-
|
108 |
-
if audio_filepath is None:
|
109 |
-
raise gr.Error("Please provide some input audio: either upload an audio file or use the microphone")
|
110 |
-
|
111 |
-
utt_id = uuid.uuid4()
|
112 |
-
with tempfile.TemporaryDirectory() as tmpdir:
|
113 |
-
converted_audio_filepath, duration = convert_audio(audio_filepath, tmpdir, str(utt_id))
|
114 |
-
|
115 |
-
# make manifest file and save
|
116 |
-
manifest_data = {
|
117 |
-
"audio_filepath": converted_audio_filepath,
|
118 |
-
"source_lang": src_lang,
|
119 |
-
"target_lang": tgt_lang,
|
120 |
-
"taskname": taskname,
|
121 |
-
"pnc": pnc,
|
122 |
-
"answer": "predict",
|
123 |
-
"duration": str(duration),
|
124 |
-
}
|
125 |
-
|
126 |
-
manifest_filepath = os.path.join(tmpdir, f'{utt_id}.json')
|
127 |
-
|
128 |
-
with open(manifest_filepath, 'w') as fout:
|
129 |
-
line = json.dumps(manifest_data)
|
130 |
-
fout.write(line + '\n')
|
131 |
-
|
132 |
-
# call transcribe, passing in manifest filepath
|
133 |
-
if duration < 40:
|
134 |
-
output_text = model.transcribe(manifest_filepath)[0]
|
135 |
-
else: # do buffered inference
|
136 |
-
with torch.cuda.amp.autocast(dtype=amp_dtype): # TODO: make it work if no cuda
|
137 |
-
with torch.no_grad():
|
138 |
-
hyps = get_buffered_pred_feat_multitaskAED(
|
139 |
-
frame_asr,
|
140 |
-
model.cfg.preprocessor,
|
141 |
-
model_stride_in_secs,
|
142 |
-
model.device,
|
143 |
-
manifest=manifest_filepath,
|
144 |
-
filepaths=None,
|
145 |
-
)
|
146 |
-
|
147 |
-
output_text = hyps[0].text
|
148 |
-
|
149 |
-
return output_text
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
with gr.Blocks(
|
154 |
-
title="NeMo Canary Model",
|
155 |
-
css="""
|
156 |
-
textarea { font-size: 18px;}
|
157 |
-
#model_output_text_box span {
|
158 |
-
font-size: 18px;
|
159 |
-
font-weight: bold;
|
160 |
-
}
|
161 |
-
""",
|
162 |
-
theme=gr.themes.Default(text_size=gr.themes.sizes.text_lg) # make text slightly bigger (default is text_md )
|
163 |
-
) as demo:
|
164 |
-
|
165 |
-
gr.HTML("<h1 style='text-align: center'>NeMo Canary model: Transcribe & Translate audio</h1>")
|
166 |
-
|
167 |
-
with gr.Row():
|
168 |
-
with gr.Column():
|
169 |
-
gr.HTML(
|
170 |
-
"<p><b>Step 1:</b> Record with your microphone.</p>"
|
171 |
-
|
172 |
-
|
173 |
-
)
|
174 |
-
|
175 |
-
audio_file = gr.Audio(sources=["microphone"], type="filepath")
|
176 |
-
|
177 |
-
|
178 |
-
with gr.Column():
|
179 |
-
|
180 |
-
gr.HTML("<p><b>Step 3:</b> Run the model.</p>")
|
181 |
-
|
182 |
-
go_button = gr.Button(
|
183 |
-
value="Run model",
|
184 |
-
variant="primary", # make "primary" so it stands out (default is "secondary")
|
185 |
-
)
|
186 |
-
|
187 |
-
model_output_text_box = gr.Textbox(
|
188 |
-
label="Model Output",
|
189 |
-
elem_id="model_output_text_box",
|
190 |
-
)
|
191 |
-
|
192 |
-
with gr.Row():
|
193 |
-
|
194 |
-
gr.HTML(
|
195 |
-
"<p style='text-align: center'>"
|
196 |
-
"🐤 <a href='https://huggingface.co/nvidia/canary-1b' target='_blank'>Canary model</a> | "
|
197 |
-
"🧑💻 <a href='https://github.com/NVIDIA/NeMo' target='_blank'>NeMo Repository</a>"
|
198 |
-
"</p>"
|
199 |
-
)
|
200 |
-
|
201 |
-
go_button.click(
|
202 |
-
fn=transcribe,
|
203 |
-
inputs = [audio_file],
|
204 |
-
outputs = [model_output_text_box]
|
205 |
-
)
|
206 |
-
|
207 |
-
|
208 |
-
demo.queue()
|
209 |
-
demo.launch()
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
# Function to capture audio using Canary ASR
|
215 |
-
def capture_audio():
|
216 |
-
utt_id = uuid.uuid4()
|
217 |
-
with tempfile.TemporaryDirectory() as tmpdir:
|
218 |
-
converted_audio_filepath, duration = convert_audio(audio_filepath, tmpdir, str(utt_id))
|
219 |
-
|
220 |
-
manifest_data = {
|
221 |
-
"audio_filepath": converted_audio_filepath,
|
222 |
-
"source_lang": "en",
|
223 |
-
"target_lang": "en",
|
224 |
-
"taskname": taskname,
|
225 |
-
"pnc": pnc,
|
226 |
-
"answer": "predict",
|
227 |
-
"duration": 10,
|
228 |
-
}
|
229 |
-
|
230 |
-
manifest_filepath = os.path.join(tmpdir, f'{utt_id}.json')
|
231 |
-
|
232 |
-
print("Listening for cue words...")
|
233 |
-
while True:
|
234 |
-
audio_input = asr_pipeline(None)[0]['input_values']
|
235 |
-
transcript = asr_pipeline(audio_input)[0]['transcription']
|
236 |
-
if "hey canary" in transcript.lower():
|
237 |
-
print("Cue word detected!")
|
238 |
-
break
|
239 |
-
print("Listening...")
|
240 |
-
return audio_input
|
241 |
-
|
242 |
-
# AI assistant function
|
243 |
-
def ai_assistant(audio_input):
|
244 |
-
# Perform automatic speech recognition (ASR)
|
245 |
-
transcript = asr_pipeline(audio_input)[0]['transcription']
|
246 |
-
|
247 |
-
# Perform question answering (QA)
|
248 |
-
qa_result = qa_pipeline(question=transcript, context="Insert your context here")
|
249 |
-
|
250 |
-
# Convert the QA result to speech using text-to-speech (TTS)
|
251 |
-
tts_output = tts_pipeline(qa_result['answer'])
|
252 |
-
|
253 |
-
return tts_output[0]['audio']
|
254 |
-
|
255 |
-
if __name__ == "__main__":
|
256 |
-
# Create a Gradio interface
|
257 |
-
gr.Interface(ai_assistant,
|
258 |
-
inputs=gr.inputs.Audio(capture=capture_audio, label="Speak Here"),
|
259 |
-
outputs=gr.outputs.Audio(type="audio", label="Assistant's Response"),
|
260 |
-
title="AI Assistant",
|
261 |
-
description="An AI Assistant that answers questions based on your speech input.").launch()
|
262 |
-
'''
|
|
|
14 |
|
15 |
return transcription[0]
|
16 |
|
17 |
+
audio_input = gr.inputs.Audio()
|
18 |
|
19 |
iface = gr.Interface(transcribe, audio_input, "text", title="ASR with NeMo Canary Model")
|
20 |
iface.launch()
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|