Update app.py
Browse files
app.py
CHANGED
@@ -1,199 +1,57 @@
|
|
1 |
-
'''
|
2 |
-
import gradio as gr
|
3 |
-
from transformers import pipeline
|
4 |
-
|
5 |
-
# Load pipelines for Canary ASR, LLama3 QA, and VITS TTS
|
6 |
-
asr_pipeline = pipeline("automatic-speech-recognition", model="nvidia/canary-1b", device=0)
|
7 |
-
qa_pipeline = pipeline("question-answering", model="LLAMA/llama3-base-qa", tokenizer="LLAMA/llama3-base-qa")
|
8 |
-
tts_pipeline = pipeline("text-to-speech", model="patrickvonplaten/vits-large", device=0)
|
9 |
-
'''
|
10 |
-
|
11 |
import gradio as gr
|
12 |
import json
|
13 |
-
import librosa
|
14 |
import os
|
15 |
-
import soundfile as sf
|
16 |
import tempfile
|
17 |
import uuid
|
18 |
from transformers import pipeline
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
from nemo.collections.asr.models import ASRModel
|
23 |
-
from nemo.collections.asr.parts.utils.streaming_utils import FrameBatchMultiTaskAED
|
24 |
-
from nemo.collections.asr.parts.utils.transcribe_utils import get_buffered_pred_feat_multitaskAED
|
25 |
-
|
26 |
-
SAMPLE_RATE = 16000 # Hz
|
27 |
-
MAX_AUDIO_SECS = 30 # wont try to transcribe if longer than this
|
28 |
src_lang = "en"
|
29 |
tgt_lang = "en"
|
30 |
-
pnc="no"
|
31 |
-
|
32 |
-
model = ASRModel.from_pretrained("nvidia/canary-1b")
|
33 |
-
model.eval()
|
34 |
-
|
35 |
-
# make sure beam size always 1 for consistency
|
36 |
-
model.change_decoding_strategy(None)
|
37 |
-
decoding_cfg = model.cfg.decoding
|
38 |
-
decoding_cfg.beam.beam_size = 1
|
39 |
-
model.change_decoding_strategy(decoding_cfg)
|
40 |
-
|
41 |
-
# setup for buffered inference
|
42 |
-
model.cfg.preprocessor.dither = 0.0
|
43 |
-
model.cfg.preprocessor.pad_to = 0
|
44 |
-
|
45 |
-
feature_stride = model.cfg.preprocessor['window_stride']
|
46 |
-
model_stride_in_secs = feature_stride * 8 # 8 = model stride, which is 8 for FastConformer
|
47 |
-
|
48 |
-
frame_asr = FrameBatchMultiTaskAED(
|
49 |
-
asr_model=model,
|
50 |
-
frame_len=40.0,
|
51 |
-
total_buffer=40.0,
|
52 |
-
batch_size=16,
|
53 |
-
)
|
54 |
-
|
55 |
-
amp_dtype = torch.float16
|
56 |
-
|
57 |
-
|
58 |
-
def convert_audio(audio_filepath, tmpdir, utt_id):
|
59 |
-
"""
|
60 |
-
Convert all files to monochannel 16 kHz wav files.
|
61 |
-
Do not convert and raise error if audio too long.
|
62 |
-
Returns output filename and duration.
|
63 |
-
"""
|
64 |
-
data, sr = librosa.load(audio_filepath, sr=None, mono=True)
|
65 |
-
|
66 |
-
duration = librosa.get_duration(y=data, sr=sr)
|
67 |
-
|
68 |
-
if duration > MAX_AUDIO_SECS:
|
69 |
-
raise gr.Error(
|
70 |
-
f"This demo can transcribe up to {MAX_AUDIO_MINUTES} minutes of audio. "
|
71 |
-
"If you wish, you may trim the audio using the Audio viewer in Step 1 "
|
72 |
-
"(click on the scissors icon to start trimming audio)."
|
73 |
-
)
|
74 |
-
|
75 |
-
if sr != SAMPLE_RATE:
|
76 |
-
data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE)
|
77 |
-
|
78 |
-
out_filename = os.path.join(tmpdir, utt_id + '.wav')
|
79 |
-
|
80 |
-
# save output audio
|
81 |
-
sf.write(out_filename, data, SAMPLE_RATE)
|
82 |
-
|
83 |
-
return out_filename, duration
|
84 |
-
|
85 |
|
86 |
# Load the ASR pipeline
|
87 |
asr_pipeline = pipeline("automatic-speech-recognition", model="nvidia/canary-1b")
|
88 |
|
89 |
-
def transcribe(audio_filepath, src_lang, tgt_lang, pnc):
|
90 |
-
|
91 |
-
if audio_filepath is None:
|
92 |
-
raise gr.Error("Please provide some input audio: either upload an audio file or use the microphone")
|
93 |
-
|
94 |
-
utt_id = uuid.uuid4()
|
95 |
-
with tempfile.TemporaryDirectory() as tmpdir:
|
96 |
-
converted_audio_filepath, duration = convert_audio(audio_filepath, tmpdir, str(utt_id))
|
97 |
-
|
98 |
-
# make manifest file and save
|
99 |
-
manifest_data = {
|
100 |
-
"audio_filepath": converted_audio_filepath,
|
101 |
-
"source_lang": src_lang,
|
102 |
-
"target_lang": tgt_lang,
|
103 |
-
"taskname": taskname,
|
104 |
-
"pnc": pnc,
|
105 |
-
"answer": "predict",
|
106 |
-
"duration": str(duration),
|
107 |
-
}
|
108 |
-
|
109 |
-
manifest_filepath = os.path.join(tmpdir, f'{utt_id}.json')
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
else: # do buffered inference
|
119 |
-
with torch.cuda.amp.autocast(dtype=amp_dtype): # TODO: make it work if no cuda
|
120 |
-
with torch.no_grad():
|
121 |
-
hyps = get_buffered_pred_feat_multitaskAED(
|
122 |
-
frame_asr,
|
123 |
-
model.cfg.preprocessor,
|
124 |
-
model_stride_in_secs,
|
125 |
-
model.device,
|
126 |
-
manifest=manifest_filepath,
|
127 |
-
filepaths=None,
|
128 |
-
)
|
129 |
-
|
130 |
-
output_text = hyps[0].text
|
131 |
-
|
132 |
-
return output_text
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
with gr.Blocks(
|
137 |
-
title="NeMo Canary Model",
|
138 |
-
css="""
|
139 |
-
textarea { font-size: 18px;}
|
140 |
-
#model_output_text_box span {
|
141 |
-
font-size: 18px;
|
142 |
-
font-weight: bold;
|
143 |
-
}
|
144 |
-
""",
|
145 |
-
theme=gr.themes.Default(text_size=gr.themes.sizes.text_lg) # make text slightly bigger (default is text_md )
|
146 |
-
) as demo:
|
147 |
-
|
148 |
-
gr.HTML("<h1 style='text-align: center'>NeMo Canary model: Transcribe & Translate audio</h1>")
|
149 |
-
|
150 |
-
with gr.Row():
|
151 |
-
with gr.Column():
|
152 |
-
gr.HTML(
|
153 |
-
"<p><b>Step 1:</b> Upload an audio file or record with your microphone.</p>"
|
154 |
-
|
155 |
-
"<p style='color: #A0A0A0;'>This demo supports audio files up to 10 mins long. "
|
156 |
-
"You can transcribe longer files locally with this NeMo "
|
157 |
-
"<a href='https://github.com/NVIDIA/NeMo/blob/main/examples/asr/speech_multitask/speech_to_text_aed_chunked_infer.py'>script</a>.</p>"
|
158 |
-
)
|
159 |
|
160 |
-
|
|
|
161 |
|
162 |
-
|
|
|
163 |
|
164 |
-
|
165 |
-
|
166 |
|
167 |
-
|
168 |
|
169 |
-
go_button = gr.Button(
|
170 |
-
value="Run model",
|
171 |
-
variant="primary", # make "primary" so it stands out (default is "secondary")
|
172 |
-
)
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
)
|
178 |
|
179 |
-
|
|
|
|
|
|
|
180 |
|
181 |
-
|
182 |
-
"<p style='text-align: center'>"
|
183 |
-
"🐤 <a href='https://huggingface.co/nvidia/canary-1b' target='_blank'>Canary model</a> | "
|
184 |
-
"🧑💻 <a href='https://github.com/NVIDIA/NeMo' target='_blank'>NeMo Repository</a>"
|
185 |
-
"</p>"
|
186 |
-
)
|
187 |
|
188 |
-
go_button.click(
|
189 |
-
fn=transcribe,
|
190 |
-
inputs = [audio_file],
|
191 |
-
outputs = [model_output_text_box]
|
192 |
-
)
|
193 |
|
|
|
|
|
194 |
|
195 |
-
demo.queue()
|
196 |
-
demo.launch()
|
197 |
|
198 |
'''
|
199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import json
|
|
|
3 |
import os
|
|
|
4 |
import tempfile
|
5 |
import uuid
|
6 |
from transformers import pipeline
|
7 |
+
import librosa
|
8 |
+
import soundfile as sf
|
9 |
|
10 |
+
SAMPLE_RATE = 16000 # Hz
|
11 |
+
MAX_AUDIO_SECS = 30 # Maximum duration of audio in seconds
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
src_lang = "en"
|
13 |
tgt_lang = "en"
|
14 |
+
pnc = "no"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Load the ASR pipeline
|
17 |
asr_pipeline = pipeline("automatic-speech-recognition", model="nvidia/canary-1b")
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
def convert_audio(audio_filepath, tmpdir, utt_id):
|
21 |
+
"""
|
22 |
+
Convert audio file to 16 kHz mono WAV format.
|
23 |
+
Returns output filename and duration.
|
24 |
+
"""
|
25 |
+
data, sr = librosa.load(audio_filepath, sr=None, mono=True)
|
26 |
+
duration = librosa.get_duration(y=data, sr=sr)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
if duration > MAX_AUDIO_SECS:
|
29 |
+
raise gr.Error(f"Maximum audio duration exceeded. Please provide an audio file of up to {MAX_AUDIO_SECS} seconds.")
|
30 |
|
31 |
+
if sr != SAMPLE_RATE:
|
32 |
+
data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE)
|
33 |
|
34 |
+
out_filename = os.path.join(tmpdir, f"{utt_id}.wav")
|
35 |
+
sf.write(out_filename, data, SAMPLE_RATE)
|
36 |
|
37 |
+
return out_filename, duration
|
38 |
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
def transcribe(audio_filepath):
|
41 |
+
if audio_filepath is None:
|
42 |
+
raise gr.Error("Please provide some input audio: either upload an audio file or use the microphone")
|
|
|
43 |
|
44 |
+
utt_id = uuid.uuid4()
|
45 |
+
with tempfile.TemporaryDirectory() as tmpdir:
|
46 |
+
converted_audio_filepath, duration = convert_audio(audio_filepath, tmpdir, str(utt_id))
|
47 |
+
transcribed_text = asr_pipeline(converted_audio_filepath, sampling_rate=SAMPLE_RATE)[0]["transcription"]
|
48 |
|
49 |
+
return transcribed_text
|
|
|
|
|
|
|
|
|
|
|
50 |
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
with gr.Interface(transcribe, gr.inputs.Audio(), "text", title="ASR with NeMo Canary Model") as iface:
|
53 |
+
iface.launch()
|
54 |
|
|
|
|
|
55 |
|
56 |
'''
|
57 |
|