jiuuee commited on
Commit
b7a5199
1 Parent(s): ec0a0cc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -18
app.py CHANGED
@@ -1,20 +1,19 @@
1
  import gradio as gr
2
  from transformers import pipeline
3
 
4
- # Create pipelines for ASR, QA, and TTS
5
- asr_pipeline = pipeline("automatic-speech-recognition", model="nvidia/canary-1b", device=0) # Adjust device based on your hardware
6
  qa_pipeline = pipeline("question-answering", model="LLAMA/llama3-base-qa", tokenizer="LLAMA/llama3-base-qa")
7
- tts_pipeline = pipeline("text-to-speech", model="patrickvonplaten/vits-large", device=0) # Adjust device based on your hardware
8
 
9
  # Function to capture audio using Canary ASR
10
  def capture_audio():
 
11
  while True:
12
- print("Say, 'Hey, Alex'")
13
- # Use Canary ASR pipeline to capture audio
14
  audio_input = asr_pipeline(None)[0]['input_values']
15
  transcript = asr_pipeline(audio_input)[0]['transcription']
16
- if "hey alex" in transcript.lower():
17
- print("I hear you!")
18
  break
19
  print("Listening...")
20
  return audio_input
@@ -22,18 +21,14 @@ def capture_audio():
22
  # AI assistant function
23
  def ai_assistant(audio_input):
24
  # Perform automatic speech recognition (ASR)
25
- transcribed_text = asr_pipeline(audio_input)[0]['transcription']
26
 
27
  # Perform question answering (QA)
28
- question = transcribed_text
29
- # Provide the context for the question answering model
30
- context = "Friends is a popular American sitcom that aired from 1994 to 2004. The show revolves around a group of six friends living in New York City—Ross, Rachel, Chandler, Monica, Joey, and Phoebe—as they navigate various aspects of their personal and professional lives. Friends is known for its humor, memorable characters, and iconic catchphrases, making it a beloved and enduring cultural phenomenon."
31
- answer = qa_pipeline(question=question, context=context)
32
 
33
- # Convert the answer to speech using text-to-speech (TTS)
34
- tts_output = tts_pipeline(answer['answer'])
35
 
36
- # Output the speech
37
  return tts_output[0]['audio']
38
 
39
  if __name__ == "__main__":
@@ -41,6 +36,6 @@ if __name__ == "__main__":
41
  gr.Interface(ai_assistant,
42
  inputs=gr.inputs.Audio(capture= capture_audio, label="Speak Here"),
43
  outputs=gr.outputs.Audio(type="audio", label="Assistant's Response"),
44
- title="Alexander the Great AI Assistant",
45
- description="An AI Assistant. Say 'Hey Alex' to speak to Alexander").launch(inbrowser=True)
46
-
 
1
  import gradio as gr
2
  from transformers import pipeline
3
 
4
+ # Load pipelines for Canary ASR, LLama3 QA, and VITS TTS
5
+ asr_pipeline = pipeline("automatic-speech-recognition", model="canary/asr-small-librispeech", device=0)
6
  qa_pipeline = pipeline("question-answering", model="LLAMA/llama3-base-qa", tokenizer="LLAMA/llama3-base-qa")
7
+ tts_pipeline = pipeline("text-to-speech", model="patrickvonplaten/vits-large", device=0)
8
 
9
  # Function to capture audio using Canary ASR
10
  def capture_audio():
11
+ print("Listening for cue words...")
12
  while True:
 
 
13
  audio_input = asr_pipeline(None)[0]['input_values']
14
  transcript = asr_pipeline(audio_input)[0]['transcription']
15
+ if "hey canary" in transcript.lower():
16
+ print("Cue word detected!")
17
  break
18
  print("Listening...")
19
  return audio_input
 
21
  # AI assistant function
22
  def ai_assistant(audio_input):
23
  # Perform automatic speech recognition (ASR)
24
+ transcript = asr_pipeline(audio_input)[0]['transcription']
25
 
26
  # Perform question answering (QA)
27
+ qa_result = qa_pipeline(question=transcript, context="Insert your context here")
 
 
 
28
 
29
+ # Convert the QA result to speech using text-to-speech (TTS)
30
+ tts_output = tts_pipeline(qa_result['answer'])
31
 
 
32
  return tts_output[0]['audio']
33
 
34
  if __name__ == "__main__":
 
36
  gr.Interface(ai_assistant,
37
  inputs=gr.inputs.Audio(capture= capture_audio, label="Speak Here"),
38
  outputs=gr.outputs.Audio(type="audio", label="Assistant's Response"),
39
+ title="AI Assistant",
40
+ description="An AI Assistant that answers questions based on your speech input.")
41
+ .launch()