''' import gradio as gr from transformers import pipeline # Load pipelines for Canary ASR, LLama3 QA, and VITS TTS asr_pipeline = pipeline("automatic-speech-recognition", model="nvidia/canary-1b", device=0) qa_pipeline = pipeline("question-answering", model="LLAMA/llama3-base-qa", tokenizer="LLAMA/llama3-base-qa") tts_pipeline = pipeline("text-to-speech", model="patrickvonplaten/vits-large", device=0) ''' import gradio as gr import json import librosa import os import soundfile as sf import tempfile import uuid import torch from nemo.collections.asr.models import ASRModel from nemo.collections.asr.parts.utils.streaming_utils import FrameBatchMultiTaskAED from nemo.collections.asr.parts.utils.transcribe_utils import get_buffered_pred_feat_multitaskAED SAMPLE_RATE = 16000 # Hz MAX_AUDIO_SECS = 30 # wont try to transcribe if longer than this model = ASRModel.from_pretrained("nvidia/canary-1b") model.eval() # make sure beam size always 1 for consistency model.change_decoding_strategy(None) decoding_cfg = model.cfg.decoding decoding_cfg.beam.beam_size = 1 model.change_decoding_strategy(decoding_cfg) # setup for buffered inference model.cfg.preprocessor.dither = 0.0 model.cfg.preprocessor.pad_to = 0 feature_stride = model.cfg.preprocessor['window_stride'] model_stride_in_secs = feature_stride * 8 # 8 = model stride, which is 8 for FastConformer frame_asr = FrameBatchMultiTaskAED( asr_model=model, frame_len=40.0, total_buffer=40.0, batch_size=16, ) amp_dtype = torch.float16 def convert_audio(audio_filepath, tmpdir, utt_id): """ Convert all files to monochannel 16 kHz wav files. Do not convert and raise error if audio too long. Returns output filename and duration. """ data, sr = librosa.load(audio_filepath, sr=None, mono=True) duration = librosa.get_duration(y=data, sr=sr) if duration > MAX_AUDIO_SECS: raise gr.Error( f"This demo can transcribe up to {MAX_AUDIO_MINUTES} minutes of audio. " "If you wish, you may trim the audio using the Audio viewer in Step 1 " "(click on the scissors icon to start trimming audio)." ) if sr != SAMPLE_RATE: data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE) out_filename = os.path.join(tmpdir, utt_id + '.wav') # save output audio sf.write(out_filename, data, SAMPLE_RATE) return out_filename, duration def transcribe(audio_filepath, src_lang, tgt_lang, pnc): if audio_filepath is None: raise gr.Error("Please provide some input audio: either upload an audio file or use the microphone") utt_id = uuid.uuid4() with tempfile.TemporaryDirectory() as tmpdir: converted_audio_filepath, duration = convert_audio(audio_filepath, tmpdir, str(utt_id)) # make manifest file and save manifest_data = { "audio_filepath": converted_audio_filepath, "source_lang": "en", "target_lang": "en", "taskname": taskname, "pnc": "no", "answer": "predict", "duration": str(duration), } manifest_filepath = os.path.join(tmpdir, f'{utt_id}.json') with open(manifest_filepath, 'w') as fout: line = json.dumps(manifest_data) fout.write(line + '\n') # call transcribe, passing in manifest filepath if duration < 40: output_text = model.transcribe(manifest_filepath)[0] else: # do buffered inference with torch.cuda.amp.autocast(dtype=amp_dtype): # TODO: make it work if no cuda with torch.no_grad(): hyps = get_buffered_pred_feat_multitaskAED( frame_asr, model.cfg.preprocessor, model_stride_in_secs, model.device, manifest=manifest_filepath, filepaths=None, ) output_text = hyps[0].text return output_text with gr.Blocks( title="NeMo Canary Model", css=""" textarea { font-size: 18px;} #model_output_text_box span { font-size: 18px; font-weight: bold; } """, theme=gr.themes.Default(text_size=gr.themes.sizes.text_lg) # make text slightly bigger (default is text_md ) ) as demo: gr.HTML("

NeMo Canary model: Transcribe & Translate audio

") with gr.Row(): with gr.Column(): gr.HTML( "

Step 1: Upload an audio file or record with your microphone.

" "

This demo supports audio files up to 10 mins long. " "You can transcribe longer files locally with this NeMo " "script.

" ) audio_file = gr.Audio(sources=["microphone", "upload"], type="filepath") gr.HTML("

Step 2: Choose the input and output language.

") with gr.Column(): gr.HTML("

Step 3: Run the model.

") go_button = gr.Button( value="Run model", variant="primary", # make "primary" so it stands out (default is "secondary") ) model_output_text_box = gr.Textbox( label="Model Output", elem_id="model_output_text_box", ) with gr.Row(): gr.HTML( "

" "🐤 Canary model | " "🧑‍💻 NeMo Repository" "

" ) go_button.click( fn=transcribe, inputs = [audio_file, src_lang, tgt_lang, pnc], outputs = [model_output_text_box] ) demo.queue() demo.launch() ''' # Function to capture audio using Canary ASR def capture_audio(): utt_id = uuid.uuid4() with tempfile.TemporaryDirectory() as tmpdir: converted_audio_filepath, duration = convert_audio(audio_filepath, tmpdir, str(utt_id)) manifest_data = { "audio_filepath": converted_audio_filepath, "source_lang": "en", "target_lang": "en", "taskname": taskname, "pnc": pnc, "answer": "predict", "duration": 10, } manifest_filepath = os.path.join(tmpdir, f'{utt_id}.json') print("Listening for cue words...") while True: audio_input = asr_pipeline(None)[0]['input_values'] transcript = asr_pipeline(audio_input)[0]['transcription'] if "hey canary" in transcript.lower(): print("Cue word detected!") break print("Listening...") return audio_input # AI assistant function def ai_assistant(audio_input): # Perform automatic speech recognition (ASR) transcript = asr_pipeline(audio_input)[0]['transcription'] # Perform question answering (QA) qa_result = qa_pipeline(question=transcript, context="Insert your context here") # Convert the QA result to speech using text-to-speech (TTS) tts_output = tts_pipeline(qa_result['answer']) return tts_output[0]['audio'] if __name__ == "__main__": # Create a Gradio interface gr.Interface(ai_assistant, inputs=gr.inputs.Audio(capture=capture_audio, label="Speak Here"), outputs=gr.outputs.Audio(type="audio", label="Assistant's Response"), title="AI Assistant", description="An AI Assistant that answers questions based on your speech input.").launch() '''