JJ Makely commited on
Commit
4abb8db
·
1 Parent(s): 07825ed

sentiment analysis model's added

Browse files
Files changed (2) hide show
  1. app.py +32 -2
  2. requirements.txt +3 -1
app.py CHANGED
@@ -1,4 +1,34 @@
1
  import streamlit as st
 
2
 
3
- x = st.slider('Select a value')
4
- st.write(x, 'squared is', x * x)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ from transformers import pipeline, AutoTokenizer
3
 
4
+ # Define a list of pretrained models
5
+ models = {
6
+ "BERTweet": "finiteautomata/bertweet-base-sentiment-analysis",
7
+ "roBERTa": "cardiffnlp/twitter-roberta-base-sentiment",
8
+ "Distilbert": "bhadresh-savani/distilbert-base-uncased-emotion",
9
+ "BERT (BONUS!: Item Review)": "nlptown/bert-base-multilingual-uncased-sentiment",
10
+ }
11
+
12
+ # Display a selection box for the user to choose a model
13
+ selected_model = st.selectbox("Select a pretrained model", list(models.keys()))
14
+
15
+ # roBERTa specific label map
16
+ roberta_label_map = {"LABEL_0": "negative", "LABEL_1": "neutral", "LABEL_2": "positive"}
17
+
18
+ # Load the selected model and tokenizer
19
+ model_name = models[selected_model]
20
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
21
+ sentiment_pipeline = pipeline("sentiment-analysis", model=model_name, tokenizer=tokenizer)
22
+
23
+ # Get user input and perform sentiment analysis
24
+ text_input = st.text_input("Enter text for sentiment analysis", "Anish is a very awesome and dedicated TA! 🤗")
25
+ submit_btn = st.button("Submit")
26
+
27
+ if submit_btn and text_input:
28
+ result = sentiment_pipeline(text_input)
29
+ if selected_model == "roBERTa":
30
+ st.write("Sentiment:", roberta_label_map[result[0]["label"]])
31
+ st.write("Score:", result[0]["score"])
32
+ else:
33
+ st.write("Sentiment:", result[0]["label"])
34
+ st.write("Score:", result[0]["score"])
requirements.txt CHANGED
@@ -1,2 +1,4 @@
1
  streamlit
2
- numpy
 
 
 
1
  streamlit
2
+ numpy
3
+ transformers
4
+ tensorflow