Spaces:
Runtime error
Runtime error
'''Image Completion Demo (ImageGPT) | |
- Paper: https://arxiv.org/abs/2109.10282 | |
- Code: https://huggingface.co/spaces/nielsr/imagegpt-completion | |
--- | |
- 2021-12-10 first created | |
- examples changed | |
''' | |
from PIL import Image | |
import matplotlib.pyplot as plt | |
import os | |
import numpy as np | |
from glob import glob | |
import gradio as gr | |
from loguru import logger | |
import torch | |
from transformers import ImageGPTFeatureExtractor, ImageGPTForCausalImageModeling | |
# ========== Settings ========== | |
EXAMPLE_DIR = 'examples' | |
examples = sorted(glob(os.path.join(EXAMPLE_DIR, '*.jpg'))) | |
# ========== Logger ========== | |
logger.add('app.log', mode='a') | |
logger.info('===== APP RESTARTED =====') | |
# ========== Models ========== | |
# MODEL_DIR = 'models' | |
# os.environ['TORCH_HOME'] = MODEL_DIR | |
# os.environ['TF_HOME'] = MODEL_DIR | |
feature_extractor = ImageGPTFeatureExtractor.from_pretrained( | |
"openai/imagegpt-medium", | |
# cache_dir=MODEL_DIR | |
) | |
model = ImageGPTForCausalImageModeling.from_pretrained( | |
"openai/imagegpt-medium", | |
# cache_dir=MODEL_DIR | |
) | |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(DEVICE) | |
logger.info(f'model loaded (DEVICE:{DEVICE})') | |
def process_image(image): | |
logger.info('--- image file received') | |
# prepare 7 images, shape (7, 1024) | |
batch_size = 7 | |
encoding = feature_extractor([image for _ in range(batch_size)], return_tensors="pt") | |
# create primers | |
samples = encoding.pixel_values.numpy() | |
n_px = feature_extractor.size | |
clusters = feature_extractor.clusters | |
n_px_crop = 16 | |
primers = samples.reshape(-1,n_px*n_px)[:,:n_px_crop*n_px] # crop top n_px_crop rows. These will be the conditioning tokens | |
# get conditioned image (from first primer tensor), padded with black pixels to be 32x32 | |
primers_img = np.reshape(np.rint(127.5 * (clusters[primers[0]] + 1.0)), [n_px_crop,n_px, 3]).astype(np.uint8) | |
primers_img = np.pad(primers_img, pad_width=((0,16), (0,0), (0,0)), mode="constant") | |
# generate (no beam search) | |
context = np.concatenate((np.full((batch_size, 1), model.config.vocab_size - 1), primers), axis=1) | |
context = torch.tensor(context).to(DEVICE) | |
output = model.generate(input_ids=context, max_length=n_px*n_px + 1, temperature=1.0, do_sample=True, top_k=40) | |
# decode back to images (convert color cluster tokens back to pixels) | |
samples = output[:,1:].cpu().detach().numpy() | |
samples_img = [np.reshape(np.rint(127.5 * (clusters[s] + 1.0)), [n_px, n_px, 3]).astype(np.uint8) for s in samples] | |
samples_img = [primers_img] + samples_img | |
# stack images horizontally | |
row1 = np.hstack(samples_img[:4]) | |
row2 = np.hstack(samples_img[4:]) | |
result = np.vstack([row1, row2]) | |
# return as PIL Image | |
completion = Image.fromarray(result) | |
logger.info('--- image generated') | |
return completion | |
iface = gr.Interface( | |
process_image, | |
title="์ด๋ฏธ์ง์ ์ ๋ฐ์ ์ง์ฐ๊ณ ์ ๋ฐ์ ์ฑ์ ๋ฃ์ด์ฃผ๋ Image Completion ๋ฐ๋ชจ์ ๋๋ค (ImageGPT)", | |
description='์ฃผ์ด์ง ์ด๋ฏธ์ง์ ์ ๋ฐ ์๋๋ฅผ AI๊ฐ ์ฑ์ ๋ฃ์ด์ค๋๋ค (CPU๋ก ์ฝ 100์ด ์ ๋ ์์๋ฉ๋๋ค)', | |
inputs=gr.inputs.Image(type="pil", label='์ธํ ์ด๋ฏธ์ง'), | |
outputs=gr.outputs.Image(type="pil", label='AI๊ฐ ๊ทธ๋ฆฐ ๊ฒฐ๊ณผ'), | |
examples=examples, | |
enable_queue=True, | |
article='<p style="text-align:center">Based on <a href="https://huggingface.co/spaces/nielsr/imagegpt-completion">๐ค Link</a></p>', | |
) | |
if __name__ == '__main__': | |
iface.launch(debug=True) | |