File size: 12,142 Bytes
9ff1108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import render_utils
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import numpy as np
import math

def crop(img, h, w):
    H, W = img.shape[-2:]
    pad_h = (H - h) // 2
    pad_w = (W - w) // 2
    remainder_h = (H - h) % 2
    remainder_w = (W - w) % 2
    img = img[:, :, pad_h:H - pad_h - remainder_h, pad_w:W - pad_w - remainder_w]
    return img

def stroke_net_predict(img_patch, result_patch, patch_size, net_g, stroke_num, patch_num):
    """
    stroke_net_predict
    """
    img_patch = img_patch.transpose([0, 2, 1]).reshape([-1, 3, patch_size, patch_size])
    result_patch = result_patch.transpose([0, 2, 1]).reshape([-1, 3, patch_size, patch_size])
    #*----- Stroke Predictor -----*#
    shape_param, stroke_decision = net_g(img_patch, result_patch)
    stroke_decision = (stroke_decision > 0).astype('float32')
    #*----- sampling color -----*#
    grid = shape_param[:, :, :2].reshape([img_patch.shape[0] * stroke_num, 1, 1, 2])
    img_temp = img_patch.unsqueeze(1).tile([1, stroke_num, 1, 1, 1]).reshape([
        img_patch.shape[0] * stroke_num, 3, patch_size, patch_size])
    color = nn.functional.grid_sample(img_temp, 2 * grid - 1, align_corners=False).reshape([
        img_patch.shape[0], stroke_num, 3])
    param = paddle.concat([shape_param, color], axis=-1)

    param = param.reshape([-1, 8])
    param[:, :2] = param[:, :2] / 2 + 0.25
    param[:, 2:4] = param[:, 2:4] / 2
    param = param.reshape([1, patch_num, patch_num, stroke_num, 8])
    decision = stroke_decision.reshape([1, patch_num, patch_num, stroke_num])#.astype('bool')
    return param, decision


def param2img_parallel(param, decision, meta_brushes, cur_canvas, stroke_num=8):
    """
        Input stroke parameters and decisions for each patch, meta brushes, current canvas, frame directory,
        and whether there is a border (if intermediate painting results are required).
        Output the painting results of adding the corresponding strokes on the current canvas.
        Args:
            param: a tensor with shape batch size x patch along height dimension x patch along width dimension
             x n_stroke_per_patch x n_param_per_stroke
            decision: a 01 tensor with shape batch size x patch along height dimension x patch along width dimension
             x n_stroke_per_patch
            meta_brushes: a tensor with shape 2 x 3 x meta_brush_height x meta_brush_width.
            The first slice on the batch dimension denotes vertical brush and the second one denotes horizontal brush.
            cur_canvas: a tensor with shape batch size x 3 x H x W,
             where H and W denote height and width of padded results of original images.

        Returns:
            cur_canvas: a tensor with shape batch size x 3 x H x W, denoting painting results.
        """
    # param: b, h, w, stroke_per_patch, param_per_stroke
    # decision: b, h, w, stroke_per_patch
    b, h, w, s, p = param.shape
    h, w = int(h), int(w)
    param = param.reshape([-1, 8])
    decision = decision.reshape([-1, 8])
    
    H, W = cur_canvas.shape[-2:]
    is_odd_y = h % 2 == 1
    is_odd_x = w % 2 == 1
    render_size_y = 2 * H // h
    render_size_x = 2 * W // w

    even_idx_y = paddle.arange(0, h, 2)
    even_idx_x = paddle.arange(0, w, 2)    
    if h > 1:
        odd_idx_y = paddle.arange(1, h, 2)
    if w > 1:
        odd_idx_x = paddle.arange(1, w, 2)

    cur_canvas = F.pad(cur_canvas, [render_size_x // 4, render_size_x // 4,
                                    render_size_y // 4, render_size_y // 4])

    valid_foregrounds = render_utils.param2stroke(param, render_size_y, render_size_x, meta_brushes)
    
    #* ----- load dilation/erosion ---- *#
    dilation = render_utils.Dilation2d(m=1)
    erosion = render_utils.Erosion2d(m=1)

    #* ----- generate alphas ----- *#
    valid_alphas = (valid_foregrounds > 0).astype('float32')
    valid_foregrounds = valid_foregrounds.reshape([-1, stroke_num, 1, render_size_y, render_size_x])
    valid_alphas = valid_alphas.reshape([-1, stroke_num, 1, render_size_y, render_size_x])

    temp = [dilation(valid_foregrounds[:, i, :, :, :]) for i in range(stroke_num)]
    valid_foregrounds = paddle.stack(temp, axis=1)
    valid_foregrounds = valid_foregrounds.reshape([-1, 1, render_size_y, render_size_x])

    temp = [erosion(valid_alphas[:, i, :, :, :]) for i in range(stroke_num)]
    valid_alphas = paddle.stack(temp, axis=1)
    valid_alphas = valid_alphas.reshape([-1, 1, render_size_y, render_size_x])

    foregrounds = valid_foregrounds.reshape([-1, h, w, stroke_num, 1, render_size_y, render_size_x])
    alphas = valid_alphas.reshape([-1, h, w, stroke_num, 1, render_size_y, render_size_x])
    decision = decision.reshape([-1, h, w, stroke_num, 1, 1, 1])
    param = param.reshape([-1, h, w, stroke_num, 8])
    
    def partial_render(this_canvas, patch_coord_y, patch_coord_x):
        canvas_patch = F.unfold(this_canvas, [render_size_y, render_size_x], strides=[render_size_y // 2, render_size_x // 2])
        # canvas_patch: b, 3 * py * px, h * w
        canvas_patch = canvas_patch.reshape([b, 3, render_size_y, render_size_x, h, w])
        canvas_patch = canvas_patch.transpose([0, 4, 5, 1, 2, 3])
        selected_canvas_patch = paddle.gather(canvas_patch, patch_coord_y, 1)
        selected_canvas_patch = paddle.gather(selected_canvas_patch, patch_coord_x, 2)
        selected_canvas_patch = selected_canvas_patch.reshape([0, 0, 0, 1, 3, render_size_y, render_size_x])
        selected_foregrounds = paddle.gather(foregrounds, patch_coord_y, 1)
        selected_foregrounds = paddle.gather(selected_foregrounds, patch_coord_x, 2)
        selected_alphas = paddle.gather(alphas, patch_coord_y, 1)
        selected_alphas = paddle.gather(selected_alphas, patch_coord_x, 2)
        selected_decisions = paddle.gather(decision, patch_coord_y, 1)
        selected_decisions = paddle.gather(selected_decisions, patch_coord_x, 2)
        selected_color = paddle.gather(param, patch_coord_y, 1)
        selected_color = paddle.gather(selected_color, patch_coord_x, 2)
        selected_color = paddle.gather(selected_color, paddle.to_tensor([5,6,7]), 4)
        selected_color = selected_color.reshape([0, 0, 0, stroke_num, 3, 1, 1])

        for i in range(stroke_num):
            i = paddle.to_tensor(i)

            cur_foreground = paddle.gather(selected_foregrounds, i, 3)
            cur_alpha = paddle.gather(selected_alphas, i, 3)
            cur_decision = paddle.gather(selected_decisions, i, 3)
            cur_color = paddle.gather(selected_color, i, 3)
            cur_foreground = cur_foreground * cur_color
            selected_canvas_patch = cur_foreground * cur_alpha * cur_decision + selected_canvas_patch * (1 - cur_alpha * cur_decision)

        selected_canvas_patch = selected_canvas_patch.reshape([0, 0, 0, 3, render_size_y, render_size_x])
        this_canvas = selected_canvas_patch.transpose([0, 3, 1, 4, 2, 5])
        
        # this_canvas: b, 3, h_half, py, w_half, px
        h_half = this_canvas.shape[2]
        w_half = this_canvas.shape[4]
        this_canvas = this_canvas.reshape([b, 3, h_half * render_size_y, w_half * render_size_x])
        # this_canvas: b, 3, h_half * py, w_half * px
        return this_canvas

    # even - even area
    # 1 | 0
    # 0 | 0
    canvas = partial_render(cur_canvas, even_idx_y, even_idx_x)
    if not is_odd_y:
        canvas = paddle.concat([canvas, cur_canvas[:, :, -render_size_y // 2:, :canvas.shape[3]]], axis=2)
    if not is_odd_x:
        canvas = paddle.concat([canvas, cur_canvas[:, :, :canvas.shape[2], -render_size_x // 2:]], axis=3)
    cur_canvas = canvas

    # odd - odd area
    # 0 | 0
    # 0 | 1
    if h > 1 and w > 1:
        canvas = partial_render(cur_canvas, odd_idx_y, odd_idx_x)
        canvas = paddle.concat([cur_canvas[:, :, :render_size_y // 2, -canvas.shape[3]:], canvas], axis=2)
        canvas = paddle.concat([cur_canvas[:, :, -canvas.shape[2]:, :render_size_x // 2], canvas], axis=3)
        if is_odd_y:
            canvas = paddle.concat([canvas, cur_canvas[:, :, -render_size_y // 2:, :canvas.shape[3]]], axis=2)
        if is_odd_x:
            canvas = paddle.concat([canvas, cur_canvas[:, :, :canvas.shape[2], -render_size_x // 2:]], axis=3)
        cur_canvas = canvas
    
    # odd - even area
    # 0 | 0
    # 1 | 0
    if h > 1:
        canvas = partial_render(cur_canvas, odd_idx_y, even_idx_x)
        canvas = paddle.concat([cur_canvas[:, :, :render_size_y // 2, :canvas.shape[3]], canvas], axis=2)
        if is_odd_y:
            canvas = paddle.concat([canvas, cur_canvas[:, :, -render_size_y // 2:, :canvas.shape[3]]], axis=2)
        if not is_odd_x:
            canvas = paddle.concat([canvas, cur_canvas[:, :, :canvas.shape[2], -render_size_x // 2:]], axis=3)
        cur_canvas = canvas

    # odd - even area
    # 0 | 1
    # 0 | 0
    if w > 1:
        canvas = partial_render(cur_canvas, even_idx_y, odd_idx_x)
        canvas = paddle.concat([cur_canvas[:, :, :canvas.shape[2], :render_size_x // 2], canvas], axis=3)
        if not is_odd_y:
            canvas = paddle.concat([canvas, cur_canvas[:, :, -render_size_y // 2:, -canvas.shape[3]:]], axis=2)
        if is_odd_x:
            canvas = paddle.concat([canvas, cur_canvas[:, :, :canvas.shape[2], -render_size_x // 2:]], axis=3)
        cur_canvas = canvas

    cur_canvas = cur_canvas[:, :, render_size_y // 4:-render_size_y // 4, render_size_x // 4:-render_size_x // 4]

    return cur_canvas



def render_parallel(original_img, net_g, meta_brushes):

    patch_size = 32
    stroke_num = 8

    with paddle.no_grad():
        
        original_h, original_w = original_img.shape[-2:]
        K = max(math.ceil(math.log2(max(original_h, original_w) / patch_size)), 0)
        original_img_pad_size = patch_size * (2 ** K)
        original_img_pad = render_utils.pad(original_img, original_img_pad_size, original_img_pad_size)
        final_result = paddle.zeros_like(original_img)

        for layer in range(0, K + 1):
            layer_size = patch_size * (2 ** layer)

            img = F.interpolate(original_img_pad, (layer_size, layer_size))
            result = F.interpolate(final_result, (layer_size, layer_size))
            img_patch = F.unfold(img, [patch_size, patch_size], strides=[patch_size, patch_size])
            result_patch = F.unfold(result, [patch_size, patch_size], strides=[patch_size, patch_size])

            # There are patch_num * patch_num patches in total
            patch_num = (layer_size - patch_size) // patch_size + 1
            param, decision = stroke_net_predict(img_patch, result_patch, patch_size, net_g, stroke_num, patch_num)

            #print(param.shape, decision.shape)
            final_result = param2img_parallel(param, decision, meta_brushes, final_result)
        
        # paint another time for last layer
        border_size = original_img_pad_size // (2 * patch_num)
        img = F.interpolate(original_img_pad, (layer_size, layer_size))
        result = F.interpolate(final_result, (layer_size, layer_size))
        img = F.pad(img, [patch_size // 2, patch_size // 2, patch_size // 2, patch_size // 2])
        result = F.pad(result, [patch_size // 2, patch_size // 2, patch_size // 2, patch_size // 2])
        img_patch = F.unfold(img, [patch_size, patch_size], strides=[patch_size, patch_size])
        result_patch = F.unfold(result, [patch_size, patch_size], strides=[patch_size, patch_size])
        final_result = F.pad(final_result, [border_size, border_size, border_size, border_size])
        patch_num = (img.shape[2] - patch_size) // patch_size + 1
        #w = (img.shape[3] - patch_size) // patch_size + 1

        param, decision = stroke_net_predict(img_patch, result_patch, patch_size, net_g, stroke_num, patch_num)

        final_result = param2img_parallel(param, decision, meta_brushes, final_result)

        final_result = final_result[:, :, border_size:-border_size, border_size:-border_size]
        final_result = (final_result.numpy().squeeze().transpose([1,2,0])[:,:,::-1] * 255).astype(np.uint8)
        return final_result