'''PaintTransformer Demo - 2021-12-21 first created - See: https://github.com/wzmsltw/PaintTransformer ''' import os # import cv2 # <== error import imageio import network from time import time from glob import glob from loguru import logger import numpy as np import gradio as gr import paddle import render_utils import render_serial # ---------- Settings ---------- GPU_ID = '-1' os.environ['CUDA_VISIBLE_DEVICES'] = GPU_ID DEVICE = 'cpu' if GPU_ID == '-1' else f'cuda:{GPU_ID}' examples = sorted(glob(os.path.join('input', '*.jpg'))) WIDTH = 512 HEIGHT = 512 STROKE_NUM = 8 FPS = 10 # ---------- Logger ---------- logger.add('app.log', mode='a') logger.info('===== APP RESTARTED =====') # ---------- Model ---------- MODEL_FILE = 'paint_best.pdparams' if not os.path.exists(MODEL_FILE): os.system('gdown --id 1G0O81qSvGp0kFCgyaQHmPygbVHFi1--q') logger.info('model downloaded') else: logger.info('model already exists') paddle.set_device(DEVICE) net_g = network.Painter(5, STROKE_NUM, 256, 8, 3, 3) net_g.set_state_dict(paddle.load(MODEL_FILE)) net_g.eval() for param in net_g.parameters(): param.stop_gradient = True brush_large_vertical = render_utils.read_img('brush/brush_large_vertical.png', 'L') brush_large_horizontal = render_utils.read_img('brush/brush_large_horizontal.png', 'L') meta_brushes = paddle.concat([brush_large_vertical, brush_large_horizontal], axis=0) def predict(image_file): original_img = render_utils.read_img(image_file, 'RGB', WIDTH, HEIGHT) logger.info(f'--- image loaded & resized {WIDTH}x{HEIGHT}') logger.info('--- doing inference...') t0 = time() final_result_list = render_serial.render_serial(original_img, net_g, meta_brushes) logger.info(f'--- inference took {time() - t0:.4f} sec') # out = cv2.VideoWriter('output.mp4', cv2.VideoWriter_fourcc(*'mp4v'), FPS, (WIDTH, HEIGHT)) frames = [] for idx, frame in enumerate(final_result_list): # out.write(frame) frames.append(frame[:,:,::-1]) # BGR -> RGB # out.release() imageio.mimsave('output.gif', frames) logger.info('--- animation generated') return 'output.gif' iface = gr.Interface( predict, title='🎨 Paint Transformer', description='This demo converts an image into a sequence of painted images (takes about 2 min ^^;)', inputs=[ gr.inputs.Image(label='Input image', type='filepath') ], outputs=[ gr.outputs.Image(label='Output animation') ], examples=examples, enable_queue=True, article='
Original work: PaintTransformer
' ) iface.launch(debug=True)