import gradio as gr from diffusers import DiffusionPipeline import torch from PIL import Image # Load the pipeline prj_path = "jkcg/furniture-chair" model = "stabilityai/stable-diffusion-xl-base-1.0" pipe = DiffusionPipeline.from_pretrained( model, torch_dtype=torch.float32, # Use float32 for CPU ) pipe.to("cpu") # Ensure the pipeline runs on CPU pipe.load_lora_weights(prj_path, weight_name="pytorch_lora_weights.safetensors") def generate_image(prompt, seed): generator = torch.Generator("cpu").manual_seed(seed) image = pipe(prompt=prompt, generator=generator).images[0] return image # Create the Gradio interface interface = gr.Interface( fn=generate_image, inputs=[ gr.Textbox(label="Prompt", value="photo of a furnichair-texx in an empty room"), gr.Slider(label="Seed", minimum=0, maximum=10000, step=1, value=42) ], outputs=gr.Image(label="Generated Image") ) # Launch the interface interface.launch(share=True)