File size: 38,165 Bytes
fb24f54
 
 
 
 
 
 
 
 
 
 
 
b74a784
fb24f54
 
 
 
 
 
f747ce5
fb24f54
 
 
 
b74a784
fb24f54
 
 
 
 
 
 
f747ce5
 
b74a784
f747ce5
 
 
 
 
 
 
 
 
 
 
 
fb24f54
 
 
 
 
 
 
 
 
 
b74a784
f747ce5
b74a784
f747ce5
b74a784
f747ce5
 
 
 
b74a784
fb24f54
b74a784
fb24f54
 
 
 
 
 
 
 
 
 
 
b74a784
 
 
fb24f54
 
 
 
b74a784
fb24f54
 
 
 
 
 
 
 
 
 
 
 
 
b74a784
fb24f54
f747ce5
 
 
 
 
 
 
 
 
fb24f54
 
 
 
f747ce5
 
 
 
 
 
fb24f54
 
 
 
 
 
 
 
 
 
 
 
b74a784
fb24f54
 
 
 
 
 
 
 
 
f747ce5
fb24f54
 
f747ce5
 
fb24f54
 
 
 
 
 
 
 
 
 
 
 
 
 
b74a784
fb24f54
 
 
 
 
 
 
 
 
 
 
 
f747ce5
 
 
fb24f54
 
 
 
f747ce5
fb24f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f747ce5
fb24f54
 
 
 
 
 
 
 
 
 
 
f747ce5
fb24f54
 
 
 
 
 
 
 
 
 
 
f747ce5
fb24f54
 
 
 
 
b74a784
fb24f54
 
 
 
 
 
 
 
f747ce5
fb24f54
f747ce5
fb24f54
 
 
 
 
 
 
 
b74a784
fb24f54
 
 
 
 
 
 
 
 
f747ce5
fb24f54
 
 
 
 
 
 
f747ce5
 
fb24f54
 
 
 
 
 
b74a784
fb24f54
 
 
 
f747ce5
fb24f54
 
 
 
 
 
f747ce5
 
 
 
fb24f54
 
 
 
 
f747ce5
fb24f54
 
f747ce5
fb24f54
 
f747ce5
fb24f54
f747ce5
fb24f54
 
 
f747ce5
 
 
fb24f54
 
 
f747ce5
fb24f54
f747ce5
 
fb24f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b74a784
fb24f54
 
 
 
 
f747ce5
 
 
 
fb24f54
 
 
 
 
b74a784
fb24f54
 
 
f747ce5
fb24f54
 
f747ce5
fb24f54
 
 
 
 
 
 
 
b74a784
fb24f54
f747ce5
 
 
 
fb24f54
 
 
 
f747ce5
fb24f54
 
 
 
 
 
f747ce5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb24f54
 
 
 
f747ce5
 
fb24f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f747ce5
 
fb24f54
f747ce5
fb24f54
 
b74a784
 
fb24f54
 
 
 
 
 
 
f747ce5
fb24f54
f747ce5
 
fb24f54
f747ce5
fb24f54
f747ce5
 
 
fb24f54
 
 
b74a784
 
fb24f54
 
 
 
 
 
 
f747ce5
 
 
 
 
 
fb24f54
 
 
f747ce5
 
 
fb24f54
 
 
 
b74a784
fb24f54
 
 
 
 
 
 
 
f747ce5
fb24f54
 
 
 
 
 
 
 
 
 
 
 
 
 
b74a784
fb24f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b74a784
fb24f54
 
 
 
 
b74a784
fb24f54
 
b74a784
fb24f54
 
 
 
 
 
 
 
 
 
 
f747ce5
fb24f54
 
 
 
 
 
f747ce5
fb24f54
 
 
 
 
 
 
 
f747ce5
 
fb24f54
f747ce5
b74a784
 
fb24f54
 
 
 
f747ce5
fb24f54
 
 
 
 
 
 
 
f747ce5
fb24f54
f747ce5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb24f54
 
 
 
 
 
f747ce5
fb24f54
 
 
 
b74a784
fb24f54
 
 
 
 
 
f747ce5
b74a784
 
 
f747ce5
b74a784
 
 
 
f747ce5
b74a784
 
f747ce5
b74a784
 
 
 
 
 
f747ce5
b74a784
 
f747ce5
b74a784
 
 
 
 
f747ce5
b74a784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f747ce5
b74a784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f747ce5
 
b74a784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f747ce5
 
b74a784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb24f54
 
 
 
b74a784
fb24f54
b74a784
 
 
 
 
 
 
 
 
 
 
 
 
fb24f54
b74a784
fb24f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
{
 "cells": [
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Learn GPT from scratch"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "\n",
    "if not os.path.isfile(\"./datasets/corpora/shakespeare.txt\"):\n",
    "    !wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt -O datasets/corpora/shakespeare.txt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "with open(\"datasets/corpora/shakespeare.txt\", 'r', encoding='utf-8') as f:\n",
    "    text = f.read()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Putting hyperparameters at the top because I learned this the hard way\n",
    "# 64 * NUM_HEADS\n",
    "EMBEDDING_NDIM=256\n",
    "VOCAB_SIZE=128\n",
    "BATCH_SIZE=64\n",
    "# \"Context window\"\n",
    "BLOCK_SIZE=256"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Tokenization and dataset creation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "#%pip install torch pandas numpy tensorboard gradio"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "import torch.nn as nn\n",
    "import torch.optim as optim\n",
    "from torch.optim import lr_scheduler\n",
    "import torch.nn.functional as F\n",
    "from torch.utils.data import Dataset, DataLoader, TensorDataset, random_split\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "import math\n",
    "\n",
    "torch.manual_seed(1337)\n",
    "# Set device to CUDA if available, otherwise use CPU\n",
    "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Simple dumb ASCII character-level \"encoding\" since all training data is ASCII\n",
    "def encode_text(text):\n",
    "    return([ord(t) for t in text])\n",
    "\n",
    "def decode_text(indices):\n",
    "    return([chr(x) for x in indices])\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1115394 chars of data\n"
     ]
    }
   ],
   "source": [
    "# Tensorify data, put it in dataset\n",
    "data = torch.tensor(encode_text(text), dtype=torch.int32)\n",
    "\n",
    "test_split_idx = int(0.8 * len(data))\n",
    "val_split_idx = int(0.9 * len(data))\n",
    "train_data = data[:test_split_idx]\n",
    "test_data = data[test_split_idx:val_split_idx]\n",
    "val_data = data[val_split_idx:]\n",
    "print(f\"{len(data)} chars of data\")"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We have to make a custom PyTorch dataset class to automatically generate the \"context\" windows at load time. This allows us to avoid keeping these windows around in memory when not in use:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "class TextDataset(Dataset):\n",
    "    def __init__(self, data_tensor, context_size):\n",
    "        self.data_tensor = data_tensor\n",
    "        self.context_size = context_size\n",
    "    \n",
    "    def __len__(self):\n",
    "        return len(self.data_tensor) - self.context_size\n",
    "\n",
    "    def __getitem__(self, index):\n",
    "        x = self.data_tensor[index:index + self.context_size]\n",
    "        y = self.data_tensor[index + 1:index + self.context_size + 1]\n",
    "        \n",
    "        return x, y"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Attention is all you need (注目こそが必要なすべて)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "class MultiheadAttention(nn.Module):\n",
    "    def __init__(self, embed_dim, num_heads, dropout=0.0, bias=True, device=None, dtype=None):\n",
    "        super(MultiheadAttention, self).__init__()\n",
    "\n",
    "        # Save variables\n",
    "        self.embed_dim = embed_dim\n",
    "        self.num_heads = num_heads\n",
    "        self.d_k = embed_dim // num_heads\n",
    "\n",
    "        self.Q = nn.Linear(embed_dim, embed_dim, bias=False)\n",
    "        self.K = nn.Linear(embed_dim, embed_dim, bias=False)\n",
    "        self.V = nn.Linear(embed_dim, embed_dim, bias=False)\n",
    "\n",
    "        self.dropout = nn.Dropout(dropout)\n",
    "        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=False)\n",
    "\n",
    "    def forward(self, query, key, value, attn_mask=None):\n",
    "        batch_size = query.size(0)\n",
    "\n",
    "        # Apply linear layers\n",
    "        q = self.Q(query) # [B, C, E]\n",
    "        k = self.K(key) # [B, C, E]\n",
    "        v = self.V(value) # [B, C, E]\n",
    "\n",
    "        # Mutate dimensions so the attention matmul can get rid of the inner d_k\n",
    "        q = q.view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)  # [batch_size, num_heads, C, d_k]\n",
    "        k = k.view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)  # [batch_size, num_heads, C, d_k]\n",
    "        v = v.view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)  # [batch_size, num_heads, C, d_k]\n",
    "        \n",
    "        # Get raw attention scores\n",
    "        scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k) # [B, num_heads, C, C]\n",
    "\n",
    "        # Apply mask, if necessary\n",
    "        if attn_mask is not None:\n",
    "            \"\"\"\n",
    "            MAY BE WORTH DEBUGGING\n",
    "\n",
    "            if key_padding_mask.dim() == 3:\n",
    "                # If the mask is 3D, add an extra dimension for the num_heads\n",
    "                key_padding_mask = key_padding_mask.unsqueeze(1)  # [batch_size, 1, seq_len, seq_len]\n",
    "            else:\n",
    "                # If the mask is 2D, add dimensions for the num_heads and the 'query' sequence length\n",
    "                key_padding_mask = key_padding_mask.unsqueeze(1).unsqueeze(2)  # [batch_size, 1, 1, seq_len]\n",
    "            \"\"\"\n",
    "            # Apply the mask to attention scores\n",
    "            scores = scores.masked_fill(attn_mask, float('-inf'))\n",
    "\n",
    "        # Scale by sqrt(k)\n",
    "        attn = F.softmax(scores, dim=-1)\n",
    "        attn = self.dropout(attn)\n",
    "        out = attn @ v # [B, num_heads, C, d_k]\n",
    "\n",
    "        # Concat and project\n",
    "        # Swap C and num_heads, force memory to coalesce, then fuse back num_heads and d_k together\n",
    "        out = out.transpose(1, 2).contiguous().view(batch_size, -1, self.embed_dim)\n",
    "        # Project: give attention \"time to think\". Maybe this should be part of a different module but whatever\n",
    "        out = self.out_proj(out)\n",
    "        return((out, None))\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "class FeedForward(nn.Module):\n",
    "    def __init__(self, embed_dim, dropout):\n",
    "        super().__init__()\n",
    "        self.net = nn.Sequential(\n",
    "            nn.Linear(embed_dim, 4 * embed_dim),\n",
    "            nn.GELU(),\n",
    "            nn.Linear(4 * embed_dim, embed_dim),\n",
    "            nn.Dropout(dropout),\n",
    "        )\n",
    "\n",
    "    def forward(self, x):\n",
    "        return(self.net(x))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "class Block(nn.Module):\n",
    "    \"\"\"Self-attention\"\"\"\n",
    "    def __init__(self, embed_dim, num_heads, mask, dropout=0.2):\n",
    "        super(Block, self).__init__()  \n",
    "        self.register_buffer(\"mask\", mask)\n",
    "        self.head = MultiheadAttention(embed_dim=embed_dim, num_heads=num_heads, dropout=dropout)\n",
    "        #self.head = nn.MultiheadAttention(embed_dim=embed_dim, num_heads=num_heads, dropout=dropout, batch_first=True)\n",
    "        self.ffwd = FeedForward(embed_dim=embed_dim, dropout=dropout)\n",
    "        self.ln1 = nn.LayerNorm(embed_dim)\n",
    "        self.ln2 = nn.LayerNorm(embed_dim)\n",
    "\n",
    "    def forward(self, x):\n",
    "        # Residual connections\n",
    "        x = self.ln1(x)\n",
    "        attn_output, _ = self.head(x, x, x, attn_mask=self.mask) \n",
    "        x = x + attn_output\n",
    "        out = x + self.ffwd(self.ln2(x))\n",
    "        return out\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "class GPT(nn.Module):\n",
    "    def __init__(self, embedding_dim, vocab_size, context_size):\n",
    "        super(GPT, self).__init__()\n",
    "\n",
    "        self.embedding_dim = embedding_dim\n",
    "        self.output_dim = vocab_size\n",
    "        self.context_size = context_size\n",
    "\n",
    "        NUM_HEADS=4\n",
    "        NUM_LAYERS=4\n",
    "        \n",
    "        # Initialize layers\n",
    "        self.tok_embed = nn.Embedding(vocab_size, embedding_dim)\n",
    "        self.pos_embed = nn.Embedding(context_size, embedding_dim)\n",
    "\n",
    "        mask = torch.tril(torch.ones(self.context_size, self.context_size)).bool()\n",
    "        mask = ~mask\n",
    "        self.register_buffer(\"mask\", mask)\n",
    "\n",
    "        self.blocks = nn.Sequential(\n",
    "            *[Block(embed_dim=embedding_dim, num_heads=NUM_HEADS, mask=mask, dropout=0.2) for _ in range(NUM_LAYERS)]\n",
    "        )\n",
    "\n",
    "        self.ln_f = nn.LayerNorm(self.embedding_dim)\n",
    "        # Final feed-forward layer from embeddings\n",
    "        self.ffwd = nn.Linear(embedding_dim, out_features=vocab_size, bias=False)\n",
    "\n",
    "    def forward(self, x):\n",
    "        tok_embed = self.tok_embed(x)\n",
    "        pos_embed = self.pos_embed(\n",
    "            torch.arange(0, self.context_size, device=\"cuda\")\n",
    "        )\n",
    "        x = tok_embed + pos_embed\n",
    "\n",
    "        x = self.blocks(x)\n",
    "        x = self.ln_f(x)\n",
    "\n",
    "        logits = self.ffwd(x)\n",
    "        return(logits)\n",
    "    \n",
    "    def infer(self, x):\n",
    "        with torch.no_grad():\n",
    "            res = self.forward(x)\n",
    "            return(res)\n"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Training"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [],
   "source": [
    "def compute_loss(model, criterion, x, y):\n",
    "    logits = model(x)\n",
    "    B,C,V = logits.shape\n",
    "    logits = logits.view(B*C, V)\n",
    "    y = y.view(B*C)\n",
    "    loss = F.cross_entropy(logits, y.long())\n",
    "    return loss"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "LR=3e-4\n",
    "\n",
    "train_dataset = TextDataset(train_data, BLOCK_SIZE)\n",
    "test_dataset = TextDataset(test_data, BLOCK_SIZE)\n",
    "\n",
    "# Janky training code\n",
    "model = GPT(\n",
    "    embedding_dim=EMBEDDING_NDIM, \n",
    "    vocab_size=VOCAB_SIZE,\n",
    "    context_size=BLOCK_SIZE,\n",
    "    )\n",
    "\n",
    "model = model.to(device)\n",
    "optimizer = optim.AdamW(model.parameters(), lr=LR)\n",
    "#scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1000, gamma=0.1)\n",
    "criterion = F.cross_entropy\n",
    "\n",
    "global_step = 0"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 68,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Step 0; loss: 4.62758731842041\n",
      "Step 100; loss: 2.5372843742370605\n",
      "Step 200; loss: 2.486722946166992\n",
      "Step 300; loss: 2.3916263580322266\n",
      "Step 400; loss: 2.269087314605713\n",
      "Step 500; loss: 2.1484358310699463\n",
      "Step 600; loss: 2.057586193084717\n",
      "Step 700; loss: 1.9845455884933472\n",
      "Step 800; loss: 1.910020351409912\n",
      "Step 900; loss: 1.8550803661346436\n",
      "Step 1000; loss: 1.8193731307983398\n",
      "Step 1100; loss: 1.767741322517395\n",
      "Step 1200; loss: 1.7612113952636719\n",
      "Step 1300; loss: 1.7009034156799316\n",
      "Step 1400; loss: 1.6827564239501953\n",
      "Step 1500; loss: 1.6604313850402832\n",
      "Step 1600; loss: 1.633068323135376\n",
      "Step 1700; loss: 1.6335963010787964\n",
      "Step 1800; loss: 1.6095472574234009\n",
      "Step 1900; loss: 1.6086715459823608\n",
      "Step 2000; loss: 1.5876469612121582\n",
      "Step 2100; loss: 1.5713247060775757\n",
      "Step 2200; loss: 1.5546257495880127\n",
      "Step 2300; loss: 1.5589814186096191\n",
      "Step 2400; loss: 1.5507397651672363\n",
      "Step 2500; loss: 1.5470337867736816\n",
      "Step 2600; loss: 1.547551155090332\n",
      "Step 2700; loss: 1.5338884592056274\n",
      "Step 2800; loss: 1.5179914236068726\n",
      "Step 2900; loss: 1.5240544080734253\n",
      "Step 3000; loss: 1.5162924528121948\n",
      "Step 3100; loss: 1.5197933912277222\n",
      "Step 3200; loss: 1.5107413530349731\n",
      "Step 3300; loss: 1.5017006397247314\n",
      "Step 3400; loss: 1.4874128103256226\n",
      "Step 3500; loss: 1.4917751550674438\n",
      "Step 3600; loss: 1.5251762866973877\n",
      "Step 3700; loss: 1.4957225322723389\n",
      "Step 3800; loss: 1.507473111152649\n",
      "Step 3900; loss: 1.4815101623535156\n",
      "Step 4000; loss: 1.4824676513671875\n",
      "Step 4100; loss: 1.4799575805664062\n",
      "Step 4200; loss: 1.4820805788040161\n",
      "Step 4300; loss: 1.4852553606033325\n",
      "Step 4400; loss: 1.469815731048584\n",
      "Step 4500; loss: 1.4853312969207764\n",
      "Step 4600; loss: 1.4830256700515747\n",
      "Step 4700; loss: 1.468559741973877\n",
      "Step 4800; loss: 1.4680243730545044\n",
      "Step 4900; loss: 1.464580774307251\n"
     ]
    }
   ],
   "source": [
    "from torch.utils.tensorboard import SummaryWriter\n",
    "\n",
    "EPOCHS = 1\n",
    "STEPS = 5000\n",
    "VAL_INTERVAL = 100\n",
    "\n",
    "model.train()\n",
    "\n",
    "train_dataloader = DataLoader(\n",
    "    train_dataset, \n",
    "    batch_size=BATCH_SIZE, \n",
    "    shuffle=True, \n",
    "    num_workers=4\n",
    ")\n",
    "\n",
    "test_dataloader = DataLoader(test_dataset, batch_size=512, num_workers=4, shuffle=True)\n",
    "\n",
    "writer = SummaryWriter()\n",
    "\n",
    "step = 0\n",
    "\n",
    "for epoch in range(EPOCHS):\n",
    "    for data, target in train_dataloader:\n",
    "        data = data.to(device)\n",
    "        target = target.to(device)\n",
    "\n",
    "        loss = compute_loss(model, criterion, data, target)\n",
    "\n",
    "        # Backward pass\n",
    "        optimizer.zero_grad()\n",
    "        loss.backward()\n",
    "        optimizer.step()\n",
    "        #scheduler.step()\n",
    "\n",
    "        writer.add_scalar(\"Loss/train\", loss.cpu().detach().numpy(), global_step)\n",
    "        global_step += 1\n",
    "\n",
    "        # TODO!!! WTF???\n",
    "        if step % VAL_INTERVAL == 0:\n",
    "            total_loss = 0\n",
    "            total_samples = 0\n",
    "\n",
    "            with torch.no_grad():\n",
    "                model.eval()\n",
    "                for x, y in test_dataloader:\n",
    "                    x = x.to(device)\n",
    "                    y = y.to(device)\n",
    "\n",
    "                    batch_loss = compute_loss(model, criterion, x, y)\n",
    "                    total_loss += batch_loss.item() * 512\n",
    "                    total_samples += 512\n",
    "                    if total_samples > 10:\n",
    "                        break\n",
    "\n",
    "            model.train()\n",
    "            average_loss = total_loss / total_samples\n",
    "\n",
    "            print(f\"Step {step}; loss: {average_loss}\")\n",
    "            writer.add_scalar(\"Loss/val\", average_loss, global_step)\n",
    "\n",
    "\n",
    "        step += 1\n",
    "        if step >= STEPS:\n",
    "            break\n",
    "\n",
    "writer.close()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [],
   "source": [
    "PATH = \"checkpoints/model.pt\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 70,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "# Store\n",
    "torch.save({\n",
    "    'steps': step,\n",
    "    'model_state_dict': model.state_dict(),\n",
    "    'optimizer_state_dict': optimizer.state_dict(),\n",
    "}, PATH)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [],
   "source": [
    "checkpoint = torch.load(PATH)\n",
    "model.load_state_dict(checkpoint['model_state_dict'])\n",
    "optimizer.load_state_dict(checkpoint['optimizer_state_dict'])"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now we test for overfitting:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "3"
      ]
     },
     "execution_count": 21,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import gc\n",
    "gc.collect()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 57,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1.7774584962397206\n"
     ]
    }
   ],
   "source": [
    "model.eval()\n",
    "total_loss = 0.0\n",
    "total_samples = 0\n",
    "\n",
    "val_dataset = TextDataset(val_data, BLOCK_SIZE)\n",
    "val_dataloader = DataLoader(val_dataset, batch_size=512, num_workers=4)\n",
    "with torch.no_grad():\n",
    "    for x, y in val_dataloader:\n",
    "        x = x.to(device)\n",
    "        y = y.to(device)\n",
    "\n",
    "        batch_loss = compute_loss(model, criterion, x, y)\n",
    "        total_loss += batch_loss.item() * x.size(0)\n",
    "        total_samples += x.size(0)\n",
    "        if total_samples > 100000:\n",
    "            break\n",
    "\n",
    "    average_loss = total_loss / total_samples\n",
    "    print(average_loss)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 71,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "3286528"
      ]
     },
     "execution_count": 71,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)\n",
    "num_params"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Finally, we generate. NOTE: seeds shorter than 256 chars have nonsense until you reach the context window. I think it's because Karpathy jammed the whole Shakespeare into one file with no act/scene breaks and both he and I didn't split it, so there's only one padding that the model sees, ever. TODO: fix this in the data loading step"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 54,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Shepherd:\n",
      "What should be gone to your deeds to prince\n",
      "That let us away the house of Lancasters.\n",
      "\n",
      "Second Murderer:\n",
      "Alas, if I be not the fire rogued man\n",
      "That hath dead by the fault of the good stars;\n",
      "And the business of some many that be sounded.\n",
      "\n",
      "AUTOLYCUS:\n",
      "My soul are but not so dishonours.\n",
      "\n",
      "BRUTUS:\n",
      "I will do not be point, but it is a soul,\n",
      "I would I see my heart fair state,\n",
      "That he is in the grief and be contented\n",
      "That you may made the father, the day doth nothing\n",
      "And lie at like in his world moved me at him.\n",
      "\n",
      "First Senator:\n",
      "The rotten far the points of our honour.\n",
      "\n",
      "AUTOLYCUS:\n",
      "The king hath been you think the duke of the foes,\n",
      "And had so long and confessal abroad,\n",
      "And said in the light save of men so meeting\n",
      "May not shall do be as we as here.\n",
      "\n",
      "Second Servingman:\n",
      "You are grace as the child and fight again,\n",
      "If you do not shall not be much of the thing;\n",
      "One but so the creature of the charge is were\n",
      "Than the point of your several motion\n",
      "May seem as her like a pride and as would all grave\n",
      "The which of the blood"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'\\nPlot histograms of the gradient values during training. If you notice a significant number of gradients are near zero (vanishing gradients) or very large values (exploding gradients), it could be a problem. TensorBoard is a useful tool for visualizing these histograms.\\n\\nShepherd:\\nWhat should be gone to your deeds to prince\\nThat let us away the house of Lancasters.\\n\\nSecond Murderer:\\nAlas, if I be not the fire rogued man\\nThat hath dead by the fault of the good stars;\\nAnd the business of some many that be sounded.\\n\\nAUTOLYCUS:\\nMy soul are but not so dishonours.\\n\\nBRUTUS:\\nI will do not be point, but it is a soul,\\nI would I see my heart fair state,\\nThat he is in the grief and be contented\\nThat you may made the father, the day doth nothing\\nAnd lie at like in his world moved me at him.\\n\\nFirst Senator:\\nThe rotten far the points of our honour.\\n\\nAUTOLYCUS:\\nThe king hath been you think the duke of the foes,\\nAnd had so long and confessal abroad,\\nAnd said in the light save of men so meeting\\nMay not shall do be as we as here.\\n\\nSecond Servingman:\\nYou are grace as the child and fight again,\\nIf you do not shall not be much of the thing;\\nOne but so the creature of the charge is were\\nThan the point of your several motion\\nMay seem as her like a pride and as would all grave\\nThe which of the blood'"
      ]
     },
     "execution_count": 54,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "seed = \"\"\"\n",
    "Plot histograms of the gradient values during training. If you notice a significant number of gradients are near zero (vanishing gradients) or very large values (exploding gradients), it could be a problem. TensorBoard is a useful tool for visualizing these histograms.\n",
    "\"\"\"\n",
    "GEN_LENGTH=1024\n",
    "\n",
    "def generate(prompt, gen_length, temp=1, top_k=10, top_p=None):\n",
    "    g_cuda = torch.Generator(device=device)\n",
    "    contexts = torch.tensor(encode_text(prompt), dtype=torch.int32).to(device)\n",
    "\n",
    "    model.eval()\n",
    "    for i in range(GEN_LENGTH):\n",
    "        transform = nn.LogSoftmax(1)\n",
    "        x = contexts[-BLOCK_SIZE:]\n",
    "        if x.size(0) < BLOCK_SIZE:\n",
    "            x = F.pad(x, (BLOCK_SIZE - x.size(0), 0), \"constant\", 0).unsqueeze(0) # B*T\n",
    "        else:\n",
    "            x = x.unsqueeze(0)\n",
    "\n",
    "        preds = model.infer(x)\n",
    "        preds = preds.squeeze(0)\n",
    "        preds = preds / temp\n",
    "        probs = F.softmax(preds, dim=-1)\n",
    "\n",
    "        if top_p is not None:\n",
    "            # Apply top-p\n",
    "            sorted_probs, sorted_indices = torch.sort(probs[-1, :], descending=True)\n",
    "            cumulative_probs = torch.cumsum(sorted_probs, dim=-1)\n",
    "            # find cutoff\n",
    "            idx_top_p = (cumulative_probs < top_p).sum().item()\n",
    "            top_probs = sorted_probs[:idx_top_p]\n",
    "            top_indices = sorted_indices[:idx_top_p]\n",
    "            # Null case\n",
    "            if top_probs.size(0) == 0:\n",
    "                top_probs = sorted_probs[:1]\n",
    "                top_indices = sorted_indices[:1]\n",
    "            \n",
    "            next_char = torch.multinomial(top_probs, num_samples=1, generator=g_cuda)\n",
    "            next_char = top_indices[next_char]\n",
    "        elif top_k is not None:\n",
    "            top_k_probs, top_k_indices = torch.topk(probs[-1, :], k=top_k)\n",
    "            next_char = torch.multinomial(top_k_probs, num_samples=1, generator=g_cuda)\n",
    "            next_char = top_k_indices[next_char]\n",
    "        else:\n",
    "            next_char = torch.multinomial(probs, num_samples=1, generator=g_cuda)\n",
    "\n",
    "\n",
    "        contexts = torch.cat((contexts, next_char), dim=0)\n",
    "        print(decode_text(next_char.cpu().numpy())[-1], end=\"\")\n",
    "    \n",
    "    return(\"\".join(decode_text(contexts.cpu().numpy())))\n",
    "\n",
    "\"\".join(generate(seed, GEN_LENGTH,temp=0.8,top_p=0.9))"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Gradio WebUI"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 55,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on local URL:  http://127.0.0.1:7866\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7866/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 55,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "If you do I am sure be your father's limbs,\n",
      "Which is not drouble Paulina,\n",
      "Where I come to me too much be to thus\n",
      "As in a mind sorten but here hoped--followed as hung\n",
      "bard at the time own that that he is death;\n",
      "The stir weors shall be a new good groans.\n",
      "\n",
      "OXFORD:\n",
      "And I say him to deed your city,\n",
      "Thy heart advantage by mine at their world,\n",
      "And be glood much show with upon the suddenly,\n",
      "And in this free can company from here faults.\n",
      "\n",
      "YORK:\n",
      "I bring thee, now I am again: it is a Montague.\n",
      "\n",
      "BRUTUS:\n",
      "We while you not be the fault of the life.\n",
      "\n",
      "KING RICHARD III:\n",
      "Come, sir, do I: in put I with so,\n",
      "The rest redies with this ballad or suppher.\n",
      "\n",
      "Third Servingman:\n",
      "Now, well do with kindness of power the that\n",
      "ence of the ambassage; but to shall here,\n",
      "But saving as the wounds both drawn dead.\n",
      "\n",
      "CLARENCE:\n",
      "Peace, sir, he adieu.\n",
      "\n",
      "MISTRESS OVERDONE:\n",
      "Cheep, comes thou lovest which I do well;\n",
      "Now now as that protectors, in this parliament--\n",
      "That nature i' the mark of her with old her,\n",
      "And so here doth in circle and call'd the wind,\n",
      "If you do I am sure be your father's limbs,\n",
      "Which is not drouble Paulina,\n",
      "Where I come to me too much be to thus\n",
      "As in a mind sorten but here hoped--followed as hung\n",
      "bard at the time own that that he is death;\n",
      "The stir weors shall be a new good groans.\n",
      "\n",
      "OXFORD:\n",
      "And I say him to deed your city,\n",
      "Thy heart advantage by mine at their world,\n",
      "And be glood much show with upon the suddenly,\n",
      "And in this free can company from here faults.\n",
      "\n",
      "YORK:\n",
      "I bring thee, now I am again: it is a Montague.\n",
      "\n",
      "BRUTUS:\n",
      "We while you not be the fault of the life.\n",
      "\n",
      "KING RICHARD III:\n",
      "Come, sir, do I: in put I with so,\n",
      "The rest redies with this ballad or suppher.\n",
      "\n",
      "Third Servingman:\n",
      "Now, well do with kindness of power the that\n",
      "ence of the ambassage; but to shall here,\n",
      "But saving as the wounds both drawn dead.\n",
      "\n",
      "CLARENCE:\n",
      "Peace, sir, he adieu.\n",
      "\n",
      "MISTRESS OVERDONE:\n",
      "Cheep, comes thou lovest which I do well;\n",
      "Now now as that protectors, in this parliament--\n",
      "That nature i' the mark of her with old her,\n",
      "And so here doth in circle and call'd the wind,\n",
      "If you do I am sure be your father's limbs,\n",
      "Which is not drouble Paulina,\n",
      "Where I come to me too much be to thus\n",
      "As in a mind sorten but here hoped--followed as hung\n",
      "bard at the time own that that he is death;\n",
      "The stir weors shall be a new good groans.\n",
      "\n",
      "OXFORD:\n",
      "And I say him to deed your city,\n",
      "Thy heart advantage by mine at their world,\n",
      "And be glood much show with upon the suddenly,\n",
      "And in this free can company from here faults.\n",
      "\n",
      "YORK:\n",
      "I bring thee, now I am again: it is a Montague.\n",
      "\n",
      "BRUTUS:\n",
      "We while you not be the fault of the life.\n",
      "\n",
      "KING RICHARD III:\n",
      "Come, sir, do I: in put I with so,\n",
      "The rest redies with this ballad or suppher.\n",
      "\n",
      "Third Servingman:\n",
      "Now, well do with kindness of power the that\n",
      "ence of the ambassage; but to shall here,\n",
      "But saving as the wounds both drawn dead.\n",
      "\n",
      "CLARENCE:\n",
      "Peace, sir, he adieu.\n",
      "\n",
      "MISTRESS OVERDONE:\n",
      "Cheep, comes thou lovest which I do well;\n",
      "Now now as that protectors, in this parliament--\n",
      "That nature i' the mark of her with old her,\n",
      "And so here doth in circle and call'd the wind,\n",
      "If you do I am sure be your father's limbs,\n",
      "Which is not drouble Paulina,\n",
      "Where I come to me too much be to thus\n",
      "As in a mind sorten but here hoped--followed as hung\n",
      "bard at the time own that that he is death;\n",
      "The stir weors shall be a new good groans.\n",
      "\n",
      "OXFORD:\n",
      "And I say him to deed your city,\n",
      "Thy heart advantage by mine at their world,\n",
      "And be glood much show with upon the suddenly,\n",
      "And in this free can company from here faults.\n",
      "\n",
      "YORK:\n",
      "I bring thee, now I am again: it is a Montague.\n",
      "\n",
      "BRUTUS:\n",
      "We while you not be the fault of the life.\n",
      "\n",
      "KING RICHARD III:\n",
      "Come, sir, do I: in put I with so,\n",
      "The rest redies with this ballad or suppher.\n",
      "\n",
      "Third Servingman:\n",
      "Now, well do with kindness of power the that\n",
      "ence of the ambassage; but to shall here,\n",
      "But saving as the wounds both drawn dead.\n",
      "\n",
      "CLARENCE:\n",
      "Peace, sir, he adieu.\n",
      "\n",
      "MISTRESS OVERDONE:\n",
      "Cheep, comes thou lovest which I do well;\n",
      "Now now as that protectors, in this parliament--\n",
      "That nature i' the mark of her with old her,\n",
      "And so here doth in circle and call'd the wind,\n",
      "If you do I am sure be your father's limbs,\n",
      "Which is not drouble Paulina,\n",
      "Where I come to me too much be to thus\n",
      "As in a mind sorten but here hoped--followed as hung\n",
      "bard at the time own that that he is death;\n",
      "The stir weors shall be a new good groans.\n",
      "\n",
      "OXFORD:\n",
      "And I say him to deed your city,\n",
      "Thy heart advantage by mine at their world,\n",
      "And be glood much show with upon the suddenly,\n",
      "And in this free can company from here faults.\n",
      "\n",
      "YORK:\n",
      "I bring thee, now I am again: it is a Montague.\n",
      "\n",
      "BRUTUS:\n",
      "We while you not be the fault of the life.\n",
      "\n",
      "KING RICHARD III:\n",
      "Come, sir, do I: in put I with so,\n",
      "The rest redies with this ballad or suppher.\n",
      "\n",
      "Third Servingman:\n",
      "Now, well do with kindness of power the that\n",
      "ence of the ambassage; but to shall here,\n",
      "But saving as the wounds both drawn dead.\n",
      "\n",
      "CLARENCE:\n",
      "Peace, sir, he adieu.\n",
      "\n",
      "MISTRESS OVERDONE:\n",
      "Cheep, comes thou lovest which I do well;\n",
      "Now now as that protectors, in this parliament--\n",
      "That nature i' the mark of her with old her,\n",
      "And so here doth in circle and call'd the wind,\n",
      "If you do I have some that to be blow.\n",
      "\n",
      "QUEEN ELIZABETH:\n",
      "But shall we will not a man; for all one,\n",
      "That you will not be but a fault and house,\n",
      "I cannot strive at once from your father's son.\n",
      "\n",
      "GLOUCESTER:\n",
      "\n",
      "CLARENCE:\n",
      "That is the field to be put in his name.\n",
      "\n",
      "KING RICHARD III:\n",
      "Ay, sir.\n",
      "\n",
      "QUEEN ELIZABETH:\n",
      "How farewell.\n",
      "\n",
      "POLIXENES:\n",
      "She hath stand and better me for you.\n",
      "\n",
      "QUEEN ELIZABETH:\n",
      "I will be patient me.\n",
      "\n",
      "CLARENCE:\n",
      "The been are the lawful strength, and he made\n",
      "That me was upon the which he comes with a holy face.\n",
      "\n",
      "BUCKINGHAM:\n",
      "The noble and of my tent.\n",
      "\n",
      "GLOUCESTER:\n",
      "My gracious lord, he did soul the news,\n",
      "Which he had of pretty with the fair traitor\n",
      "Than a service hath some said for his prince.\n",
      "\n",
      "QUEEN MARGARET:\n",
      "Stay the sad is mine execution,\n",
      "Which can slain with you have some so death;\n",
      "For I have sent done the many of the city\n",
      "That you more so much hold me speak.\n",
      "\n",
      "GLOUCESTER:\n",
      "\n",
      "GLOUCESTER:\n",
      "So doth fair lord, that be straight in his wit\n",
      "The matter, the city distance.\n",
      "\n",
      "LEONTES:\n",
      "The brother about the fire--thou sha\n",
      "If you do I am sure be so princely false;\n",
      "And the prince may do me for the house.\n",
      "\n",
      "GLOUCESTER:\n",
      "Why, what wilt me, when we strike a mine eyes;\n",
      "Of he doth deficers, in my fair deeds,\n",
      "That thou wert from me hence his pardon lives.\n",
      "\n",
      "LORD FITZWATER:\n",
      "Say, I will be ground to some of my body;\n",
      "And what thou wilt part so supposed with him.\n",
      "\n",
      "CLARENCE:\n",
      "You might be breathe in me?\n",
      "\n",
      "CAMILLO:\n",
      "Stay now the first is no more resolved\n",
      "With all the lawful and shed the gates word.\n",
      "\n",
      "CLARENCE:\n",
      "Thou that, when my fair that I would not for heaven,\n",
      "That fortune but not like her for the mind,\n",
      "When I do be my tongues and her love.\n",
      "\n",
      "ANGELO:\n",
      "She shall we not have done by his house.\n",
      "\n",
      "HENRY BOLINGBROKE:\n",
      "Have you no more by my fortune should as heard.\n",
      "\n",
      "QUEEN ELIZABETH:\n",
      "O, bring forth thy brother Gloucester,\n",
      "But both an earthly of love from spoke me.\n",
      "\n",
      "QUEEN ELIZABETH:\n",
      "Thou art thou as you shalt be dish'd in their head.\n",
      "\n",
      "Second Murderer:\n",
      "The prince and my execution and heard it.\n",
      "\n",
      "KING RICHARD III:\n",
      "Say, well I am a house in my heart;\n",
      "But I am"
     ]
    }
   ],
   "source": [
    "import gradio as gr\n",
    "\n",
    "demo = gr.Interface(\n",
    "    fn=generate, \n",
    "    inputs=[\n",
    "        gr.Textbox(lines=2, placeholder=\"Prompt here...\"),\n",
    "        gr.Number(value=256),\n",
    "        gr.Number(value=0.8),\n",
    "        gr.Slider(maximum=128,value=10),\n",
    "        gr.Slider(maximum=1,value=1)\n",
    "    ], \n",
    "    outputs=\"text\",\n",
    "    title=\"Shakespeare-GPT\",\n",
    "    description=\"Putting theater kids out of their nonexistent jobs since 2023\"\n",
    ")\n",
    "\n",
    "demo.launch()\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.10"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}