Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,3 @@
|
|
1 |
-
import
|
2 |
-
from transformers import AutoTokenizer, AutoModel
|
3 |
-
import torch
|
4 |
|
5 |
-
|
6 |
-
@st.cache(allow_output_mutation=True)
|
7 |
-
def load_model():
|
8 |
-
tokenizer = AutoTokenizer.from_pretrained("Salesforce/SFR-Embedding-Mistral")
|
9 |
-
model = AutoModel.from_pretrained("Salesforce/SFR-Embedding-Mistral")
|
10 |
-
return tokenizer, model
|
11 |
-
|
12 |
-
tokenizer, model = load_model()
|
13 |
-
|
14 |
-
def embed_text(text):
|
15 |
-
inputs = tokenizer(text, return_tensors='pt', truncation=True, max_length=32768)
|
16 |
-
outputs = model(**inputs)
|
17 |
-
return outputs.last_hidden_state.mean(dim=1).detach().numpy()
|
18 |
-
|
19 |
-
def main():
|
20 |
-
st.title("Text Embedding using Salesforce/SFR-Embedding-Mistral")
|
21 |
-
|
22 |
-
# Text input
|
23 |
-
text = st.text_area("Enter text here:", height=150)
|
24 |
-
|
25 |
-
if st.button("Get Embeddings"):
|
26 |
-
if text:
|
27 |
-
with st.spinner('Fetching embeddings...'):
|
28 |
-
embeddings = embed_text(text)
|
29 |
-
st.write(embeddings)
|
30 |
-
else:
|
31 |
-
st.warning("Please enter some text to process.")
|
32 |
-
|
33 |
-
if __name__ == "__main__":
|
34 |
-
main()
|
|
|
1 |
+
import gradio as gr
|
|
|
|
|
2 |
|
3 |
+
gr.load("models/Salesforce/SFR-Embedding-Mistral").launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|