jmdu commited on
Commit
d4dd871
·
verified ·
1 Parent(s): 4a43e12

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -33
app.py CHANGED
@@ -1,34 +1,3 @@
1
- import streamlit as st
2
- from transformers import AutoTokenizer, AutoModel
3
- import torch
4
 
5
- # Load the model and tokenizer
6
- @st.cache(allow_output_mutation=True)
7
- def load_model():
8
- tokenizer = AutoTokenizer.from_pretrained("Salesforce/SFR-Embedding-Mistral")
9
- model = AutoModel.from_pretrained("Salesforce/SFR-Embedding-Mistral")
10
- return tokenizer, model
11
-
12
- tokenizer, model = load_model()
13
-
14
- def embed_text(text):
15
- inputs = tokenizer(text, return_tensors='pt', truncation=True, max_length=32768)
16
- outputs = model(**inputs)
17
- return outputs.last_hidden_state.mean(dim=1).detach().numpy()
18
-
19
- def main():
20
- st.title("Text Embedding using Salesforce/SFR-Embedding-Mistral")
21
-
22
- # Text input
23
- text = st.text_area("Enter text here:", height=150)
24
-
25
- if st.button("Get Embeddings"):
26
- if text:
27
- with st.spinner('Fetching embeddings...'):
28
- embeddings = embed_text(text)
29
- st.write(embeddings)
30
- else:
31
- st.warning("Please enter some text to process.")
32
-
33
- if __name__ == "__main__":
34
- main()
 
1
+ import gradio as gr
 
 
2
 
3
+ gr.load("models/Salesforce/SFR-Embedding-Mistral").launch()