File size: 4,431 Bytes
5ae38c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import gradio as gr
from threading import Thread
from open_lm.hf import *
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import torch
from gradio.layouts import Accordion

# Define model options
MODEL_OPTIONS = {
    "TRI-ML/DCLM-1B": "TRI-ML/DCLM-1B",
    "Apple DCLM-Baseline-7B": "apple/DCLM-Baseline-7B"
}

# Global variables for model and tokenizer
current_model = None
current_tokenizer = None

def load_model(model_name):
    global current_model, current_tokenizer
    current_tokenizer = AutoTokenizer.from_pretrained(MODEL_OPTIONS[model_name])
    current_model = AutoModelForCausalLM.from_pretrained(MODEL_OPTIONS[model_name])
    device = "cuda" if torch.cuda.is_available() else "cpu"
    current_model = current_model.to(device)
    return f"Loaded model: {model_name}"

def generate(
    prompt, model_choice, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
    global current_model, current_tokenizer
    
    if current_model is None or current_tokenizer is None:
        return "Please load a model first."

    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)
    
    inputs = current_tokenizer(prompt, return_tensors="pt").to(current_model.device)
    
    generate_kwargs = dict(
        **inputs,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        pad_token_id=current_tokenizer.eos_token_id
    )

    streamer = TextIteratorStreamer(current_tokenizer, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs["streamer"] = streamer

    thread = Thread(target=current_model.generate, kwargs=generate_kwargs)
    thread.start()

    # Write the prompt in blue
    output = "<span style='color: blue;'>" + prompt + "</span>"
    for new_text in streamer:
        if isinstance(new_text, torch.Tensor):
            new_text = current_tokenizer.decode(new_text)
        output += new_text
        yield output

    thread.join()
    return output

additional_inputs=[
        gr.Slider(
            label="Temperature",
            value=0.9,
            minimum=0.0,
            maximum=1.0,
            step=0.05,
            interactive=True,
            info="Higher values produce more diverse outputs",
        ),
        gr.Slider(
            label="Max new tokens",
            value=256,
            minimum=0,
            maximum=1048,
            step=64,
            interactive=True,
            info="The maximum numbers of new tokens",
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            value=0.90,
            minimum=0.0,
            maximum=1,
            step=0.05,
            interactive=True,
            info="Higher values sample more low-probability tokens",
        ),
        gr.Slider(
            label="Repetition penalty",
            value=1.2,
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            interactive=True,
            info="Penalize repeated tokens",
        )
    ]

with gr.Blocks() as demo:
    gr.Markdown(
        """
        # DCLM Text Completion Demo
        This demo allows you to generate text using a DCLM model. 
        These models are trained to predict the next word in a sequence of text, and can be used to generate text completions, they are not chatbots. 
        
        First select a model from the dropdown and click "Load Model". 
        Then enter some text in the text box and click "Generate" to see the model's completion.
        """
    )

    
    with gr.Row():
        model_dropdown = gr.Dropdown(choices=list(MODEL_OPTIONS.keys()), label="Select Model")

    model_dropdown.select(
        load_model,
        inputs=[model_dropdown],
        outputs=[gr.Textbox(label="Model Status")]
    )

    text_input = gr.Textbox(lines=3, label="Input Text")
    text_output = gr.HTML(label="Generated Text")

    generate_button = gr.Button("Generate")

    generate_button.click(
        generate,
        inputs=[text_input, model_dropdown, *additional_inputs],
        outputs=[text_output]
    )
    with Accordion(label="Advanced Options", open=False):
        for input_component in additional_inputs:
            if not input_component.is_rendered:
                input_component.render()

demo.launch()