File size: 7,808 Bytes
8262f40 5313bd0 0bb8dc5 5ae38c5 5313bd0 5ae38c5 425b71f 0bb8dc5 5ae38c5 2aa2690 0bb8dc5 5ae38c5 0bb8dc5 5ae38c5 5313bd0 5ae38c5 5313bd0 5ae38c5 5313bd0 5ae38c5 475d026 5ae38c5 475d026 5ae38c5 0bb8dc5 5ae38c5 0bb8dc5 5ae38c5 0bb8dc5 5ae38c5 0bb8dc5 5ae38c5 0bb8dc5 5ae38c5 0bb8dc5 5ae38c5 0bb8dc5 5ae38c5 0bb8dc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import spaces
import gradio as gr
from threading import Thread
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import torch
from open_lm.hf import *
from open_lm.precision import get_autocast
# Define model options
MODEL_OPTIONS = {
"TRI DCLM-1B": "TRI-ML/DCLM-1B",
"Apple DCLM-Baseline-7B": "apple/DCLM-Baseline-7B",
"[IT] TRI DCLM-1B": "TRI-ML/DCLM-1B-IT",
"[IT] Apple DCLM-Baseline-7B": "mlfoundations/dclm-7b-it",
}
# Global variables for model and tokenizer
current_model = None
current_tokenizer = None
def load_model(model_name):
global current_model, current_tokenizer
current_tokenizer = AutoTokenizer.from_pretrained(MODEL_OPTIONS[model_name])
current_model = AutoModelForCausalLM.from_pretrained(MODEL_OPTIONS[model_name])
device = "cuda" if torch.cuda.is_available() else "cpu"
current_model = current_model.to(device)
return f"Loaded model: {model_name}"
@spaces.GPU
def generate_completion(
prompt, model_choice, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
global current_model, current_tokenizer
if current_model is None or current_tokenizer is None:
return "Please select a model first."
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
inputs = current_tokenizer(prompt, return_tensors="pt").to(current_model.device)
autocast = get_autocast("amp_bf16")
with autocast():
generate_kwargs = dict(
**inputs,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
pad_token_id=current_tokenizer.eos_token_id
)
streamer = TextIteratorStreamer(current_tokenizer, skip_prompt=True, skip_special_tokens=False)
streamer.stop_signal = current_tokenizer.decode(current_tokenizer.eos_token_id)
generate_kwargs["streamer"] = streamer
thread = Thread(target=current_model.generate, kwargs=generate_kwargs)
thread.start()
output = "<span style='color: blue;'>" + prompt + "</span>"
for new_text in streamer:
if isinstance(new_text, torch.Tensor):
new_text = current_tokenizer.decode(new_text)
if streamer.stop_signal in new_text:
output += new_text.split(streamer.stop_signal)[0]
break
output += new_text
yield output
thread.join()
return output
def format_prompt(message, history):
prompt = ""
for user_prompt, bot_response in history:
prompt += f"User: {user_prompt}\nAssistant: {bot_response}\n"
prompt += f"User: {message}\nAssistant:"
return prompt
@spaces.GPU
def generate_chat(
message, chat_history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
global current_model, current_tokenizer
if current_model is None or current_tokenizer is None:
yield chat_history + [("Error", "Please select a model first.")]
return
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
formatted_prompt = format_prompt(message, chat_history)
inputs = current_tokenizer(formatted_prompt, return_tensors="pt").to(current_model.device)
generate_kwargs = dict(
**inputs,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
pad_token_id=current_tokenizer.eos_token_id
)
streamer = TextIteratorStreamer(current_tokenizer, skip_prompt=True, skip_special_tokens=False)
streamer.stop_signal = current_tokenizer.decode(current_tokenizer.eos_token_id)
generate_kwargs["streamer"] = streamer
thread = Thread(target=current_model.generate, kwargs=generate_kwargs)
thread.start()
new_history = chat_history + [(message, "")]
for new_text in streamer:
if isinstance(new_text, torch.Tensor):
new_text = current_tokenizer.decode(new_text)
if streamer.stop_signal in new_text:
new_text = new_text.split(streamer.stop_signal)[0]
new_history[-1] = (message, new_history[-1][1] + new_text)
break
new_history[-1] = (message, new_history[-1][1] + new_text)
yield new_history
thread.join()
additional_inputs = [
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=1048,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
with gr.Blocks() as demo:
gr.Markdown(
"""
# DCLM Demo
This demo allows you to generate text using DCLM models in two modes:
1. Text Completion:
For non-Instruction-Tuned models, it generates the continuation of the input text.
2. Chatbot:
For Instruction-Tuned [IT] models, it generates responses to user messages as a chatbot.
Select a model from the dropdown to start, it might take a few seconds to load.
The interface will automatically switch between Text Completion and Chatbot modes based on the selected model.
"""
)
with gr.Row():
model_dropdown = gr.Dropdown(choices=list(MODEL_OPTIONS.keys()), label="Select Model")
model_status = gr.Textbox(label="Model Status")
# Text Completion interface
with gr.Row(visible=False) as completion_interface:
with gr.Column():
text_input = gr.Textbox(lines=3, label="Input Text")
text_output = gr.Markdown(label="Generated Text")
generate_button = gr.Button("Generate")
# Chatbot interface
with gr.Row(visible=False) as chat_interface:
with gr.Column():
chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel")
msg = gr.Textbox(label="Message")
clear = gr.Button("Clear")
with gr.Accordion("Advanced Options", open=False):
for input_component in additional_inputs:
input_component.render()
def switch_interface(model_name):
is_it_model = model_name.startswith("[IT]")
status = load_model(model_name)
return (
gr.Row(visible=not is_it_model), # completion_interface
gr.Row(visible=is_it_model), # chat_interface
status # model_status
)
model_dropdown.change(
switch_interface,
inputs=[model_dropdown],
outputs=[completion_interface, chat_interface, model_status]
)
generate_button.click(
generate_completion,
inputs=[text_input, model_dropdown, *additional_inputs],
outputs=[text_output]
)
msg.submit(generate_chat, [msg, chatbot, *additional_inputs], chatbot)
clear.click(lambda: None, None, chatbot, queue=False)
demo.queue().launch() |