Spaces:
Paused
Paused
File size: 13,444 Bytes
aeba71c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import os
import pdb
import pickle as pkl
from torch.utils.data import Dataset, DataLoader
# from omegaconf import DictConfig, OmegaConf
from scipy.spatial.transform import Rotation as R
from models.joints_to_smplx import joints_to_smpl, JointsToSMPLX
from utils import *
from constants import *
from datasets.trumans import TrumansDataset
from models.synhsi import Unet
# from hydra import compose, initialize
import yaml
ACT_TYPE = ['scene', 'grasp', 'artic', 'none']
def convert_trajectory(trajectory):
trajectory_new = [[t['x'], t['y'], t['z']] for t in trajectory]
trajectory_new = np.array(trajectory_new)
return trajectory_new
def get_base_speed(cfg, trajectory, is_zup=True):
trajectory_layer = trajectory
if is_zup:
trajectory_layer = zup_to_yup(trajectory_layer)
trajectory2D = trajectory_layer[:, [0, 2]]
distance = np.sum(np.linalg.norm(trajectory2D[1:] - trajectory2D[:-1], axis=1))
speed = trajectory_layer.shape[0] // distance
print('Base Speed:', speed, flush=True)
return speed
def get_guidance(cfg, trajectory, samplers, act_type='none', speed=35):
trajectory_layer = trajectory
# trajectory_layer = zup_to_yup(trajectory_layer)
print(trajectory_layer.shape)
if cfg.action_type != 'pure_inter':
#TODO
midpoints = trajectory_layer[[0] * cfg.len_pre + list(range(0, len(trajectory_layer), speed)) + [-1] * (cfg.len_act + (1 if cfg.stay_and_act else 0))]
# midpoints[0, 0] = 1.4164
# midpoints[0, 2] = 2.2544
# midpoints = trajectory_layer[[0] * cfg.len_pre + [25, 50] + [50] + [70, 90]]
else:
midpoints = trajectory_layer[[0] * cfg.len_pre + [0] + [0] * (cfg.len_act + 1 if cfg.stay_and_act else 0)]
midpoints = torch.tensor(midpoints).float().to(cfg.device)
max_step = midpoints.shape[0] - 1
mat_init = cfg.batch_size * [np.eye(4)]
mat_init = torch.from_numpy(np.stack(mat_init, axis=0)).float().to(cfg.device)
print(midpoints)
mat_init[:, 0, 3] = midpoints[0, 0]
mat_init[:, 2, 3] = midpoints[0, 2]
dx = midpoints[cfg.len_pre + 1, 0] - midpoints[0, 0]
dz = midpoints[cfg.len_pre + 1, 2] - midpoints[0, 2]
print(-np.arctan2(dx.item(), dz.item()), dx, dz)
mat_rot_y = R.from_rotvec(np.array([0, np.arctan2(dx.item(), dz.item()), 0])).as_matrix()
# mat_rot_y = R.from_rotvec(np.array([0, np.arctan2(-1, -2), 0])).as_matrix()
mat_init[:, :3, :3] = torch.from_numpy(mat_rot_y).float().to(cfg.device)
# goal_list = torch.zeros((max_step, cfg.batch_size, cfg.dataset.seq_len, 3)).float().to(cfg.device)
goal_list = []
action_label_list = []
# action_label_list = torch.zeros((max_step, cfg.batch_size, cfg.dataset.seq_len, cfg.dataset.nb_actions)).float().to(cfg.device)
sampler_list = []
if act_type == 'none':
for s in range(max_step):
goal = torch.zeros((cfg.batch_size, 1, 3)).float().to(cfg.device)
goal[:, :] = midpoints[s + 1]
goal_list.append(goal)
if cfg.dataset.nb_actions > 0:
action_label = torch.zeros((cfg.batch_size, cfg.dataset.seq_len, cfg.dataset.nb_actions)).float().to(cfg.device)
action_label_list.append(action_label)
else:
action_label_list.append(None)
sampler_list.append(samplers['body'])
elif act_type == 'write':
midpoints = torch.from_numpy(trajectory_layer[::4]).float().to(cfg.device)
for s in range(midpoints.shape[0] // 16):
goal = torch.zeros((cfg.batch_size, 16, 3)).float().to(cfg.device)
goal[:, :] = midpoints[s * 16: (s + 1) * 16]
goal_list.append(goal)
if cfg.dataset.nb_actions > 0:
action_label = torch.zeros((cfg.batch_size, cfg.dataset.seq_len, cfg.dataset.nb_actions)).float().to(cfg.device)
action_label_list.append(action_label)
else:
action_label_list.append(None)
sampler_list.append(samplers['hand'])
elif act_type == 'scene':
for s in range(max_step):
goal = torch.zeros((cfg.batch_size, 1, 3)).float().to(cfg.device)
goal[:, :] = midpoints[s + 1]
goal_list.append(goal)
sampler_list.append(samplers['body'])
action_label = torch.zeros((cfg.batch_size, cfg.dataset.seq_len, cfg.dataset.nb_actions)).float().to(cfg.device)
if s > max_step - cfg.len_act:
action_label[:, :, cfg.action_id] = 1.
action_label_list.append(action_label)
elif act_type == 'grasp':
for s in range(max_step):
if s != max_step - cfg.len_act:
goal = torch.zeros((cfg.batch_size, 1, 3)).float().to(cfg.device)
goal[:, :] = midpoints[s + 1]
goal_list.append(goal)
else:
# grasp_goal = zup_to_yup(np.array([[-0.32, -3.36, 0.395],
# [-0.3, -3.2, 0.395],
# [-0.25, -3, 0.394],
# [-0.147, -3.0, 0.395]])).reshape((cfg.batch_size, -1, 3))
grasp_goal = zup_to_yup(np.array(trajectory['Object'])).reshape((cfg.batch_size, 1, 3))
goal = torch.zeros((cfg.batch_size, 3, 3)).float().to(cfg.device)
goal[:, :] = torch.from_numpy(grasp_goal).float().to(cfg.device)
goal_list.append(goal)
action_label = torch.zeros((cfg.batch_size, cfg.dataset.seq_len, cfg.dataset.nb_actions)).float().to(cfg.device)
if s < max_step - cfg.len_act:
sampler_list.append(samplers['body'])
elif s == max_step - cfg.len_act:
sampler_list.append(samplers['hand'])
else:
sampler_list.append(samplers['body'])
if cfg.action_id != -1:
action_label[:, :, cfg.action_id] = 1.
action_label_list.append(action_label)
elif act_type == 'pure_inter':
sampler_list += [samplers['body']] * (cfg.len_pre + cfg.len_act)
goal = torch.zeros((cfg.batch_size, 1, 3)).float().to(cfg.device)
goal[:, :] = midpoints[0]
goal_list += [goal] * (cfg.len_pre + + cfg.len_act)
action_label = torch.zeros((cfg.batch_size, cfg.dataset.seq_len, cfg.dataset.nb_actions)).float().to(cfg.device)
action_label_list += [action_label.clone()] * cfg.len_pre
action_label[:, :, cfg.action_id] = 2.
action_label_list += [action_label.clone()] * cfg.len_act
return mat_init, goal_list, action_label_list, sampler_list
def sample_step(cfg, mat, obj_locs, goal_list, action_label_list, sampler_list):
max_step = len(goal_list)
fixed_points = None
fixed_frame = 2
points_all = []
cnt_fixed_frame = 0
cnt_seq_len = 0
for s in range(max_step):
print('step', s)
sampler = sampler_list[s]
if s != 0:
fixed_points = sampler.dataset.normalize_torch(transform_points(fixed_points, torch.inverse(mat)))
else:
if cfg.continue_last:
method_id = cfg.method_name.split('_')[-1]
method_name_last = cfg.method_name[:-1] + str(int(method_id) - 1)
mat = torch.from_numpy(np.load(os.path.join(cfg.exp_dir, f'{method_name_last}_mat.npy'))).to(sampler.device)
fixed_points = torch.from_numpy(np.load(os.path.join(cfg.exp_dir, f'{method_name_last}_fixed_points.npy'))).to(sampler.device)
fixed_points = sampler.dataset.normalize_torch(transform_points(fixed_points, torch.inverse(mat)))
samples, occs = sampler.p_sample_loop(fixed_points, obj_locs, mat, cfg.scene_name, goal_list[s], action_label_list[s])
if 0 <= s < cfg.len_pre:
cnt_fixed_frame += sampler.fixed_frame
if 0 <= s < cfg.len_pre:
cnt_seq_len += cfg.dataset.seq_len
points_gene = samples[-1]
points_gene_np = points_gene.reshape(cfg.batch_size, cfg.dataset.seq_len, -1, 3).cpu().numpy()
if s == 0 or fixed_frame == 0:
#TODO
points_all.append(points_gene_np[:, fixed_frame - 1:])
elif fixed_frame > 0:
points_all.append(points_gene_np[:, fixed_frame:])
# fixed_frame = 0 if s == max_step - 1 else sampler_list[s + 1].fixed_frame
fixed_frame = sampler_list[s].fixed_frame if s == max_step - 1 else sampler_list[s + 1].fixed_frame
pelvis_new = points_gene[:, -fixed_frame, :9].cpu().numpy().reshape(cfg.batch_size, 3, 3)
trans_mats = np.repeat(np.eye(4)[np.newaxis, :, :], cfg.batch_size, axis=0)
for ip, pn in enumerate(pelvis_new):
_, ret_R, ret_t = rigid_transform_3D(np.matrix(pn), rest_pelvis, False)
ret_t[1] = 0.0
rot_euler = R.from_matrix(ret_R).as_euler('zxy')
shift_euler = np.array([0, 0, rot_euler[2]])
shift_rot_matrix2 = R.from_euler('zxy', shift_euler).as_matrix()
trans_mats[ip, :3, :3] = shift_rot_matrix2
trans_mats[ip, :3, 3] = ret_t.reshape(-1)
mat = torch.from_numpy(trans_mats).to(device=cfg.device, dtype=torch.float32)
if fixed_frame > 0:
fixed_points = points_gene[:, -fixed_frame:]
if s == max_step - 1:
print('Saved Mat and Fixed Points', flush=True)
# np.save(os.path.join(cfg.exp_dir, f'{cfg.method_name}_mat.npy'), mat.cpu().numpy())
# np.save(os.path.join(cfg.exp_dir, f'{cfg.method_name}_fixed_points.npy'), fixed_points.cpu().numpy())
points_all = np.concatenate(points_all, axis=1)
points_all = points_all[:, cnt_seq_len - cnt_fixed_frame:]
return points_all
def sample_wrapper(trajectory, obj_locs):
trajectory = convert_trajectory(trajectory)
# obj_locs = {key: [data[key]['x'], data['key']['z']] for key in data.keys() if 'trajectory' not in key}
# cfg = compose(config_name="config_sample_synhsi")
with open('config/config_sample_synhsi.yaml') as f:
cfg = yaml.safe_load(f)
cfg = dotDict(cfg)
# @hydra.main(version_base=None, config_path="../config", config_name="config_sample_synhsi")
# def sample(cfg) -> None:
print(cfg)
# seed_everything(100)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# model_joints_to_smplx = init_model(cfg.model.model_smplx, device=device, eval=True)
model_joints_to_smplx = JointsToSMPLX(**cfg.model.model_smplx)
model_joints_to_smplx.load_state_dict(torch.load(cfg.model.model_smplx.ckpt))
model_joints_to_smplx.to(device)
model_joints_to_smplx.eval()
# model_body = init_model(cfg.model.synhsi_body, device=device, eval=True)
model_body = Unet(**cfg.model.synhsi_body)
model_body.load_state_dict(torch.load(cfg.model.synhsi_body.ckpt))
model_body.to(device)
model_body.eval()
# model_hand = init_model(cfg.model.synhsi_hand, device=device, eval=True)
# synhsi_dataset = hydra.utils.instantiate(cfg.dataset)
synhsi_dataset = TrumansDataset(**cfg.dataset)
sampler_body = hydra.utils.instantiate(cfg.sampler.pelvis)
# sampler_hand = hydra.utils.instantiate(cfg.sampler.right_hand)
sampler_body.set_dataset_and_model(synhsi_dataset, model_body)
# sampler_hand.set_dataset_and_model(None, model_hand)
samplers = {'body': sampler_body, 'hand': None}
# for scene_name in ['N3OpenArea']:
# trajectory = np.load(os.path.join(cfg.test_dir, cfg.exp_name, f'trajectories.npy'), allow_pickle=True).item()
# cfg.scene_name = scene_name
# cfg.action_type = trajectory['action_type']
# if 'action_id' in trajectory.keys():
# cfg.action_id = trajectory['action_id']
# GP_LAYERS = ['GP_Layer']
method_name = cfg.method_name
lid = 0
base_speed = get_base_speed(cfg, trajectory, is_zup=False)
mat, goal_list, action_label_list, sampler_list = get_guidance(cfg, trajectory, samplers, act_type=cfg.action_type,
speed=int(0.6 * base_speed))
points_all = sample_step(cfg, mat, obj_locs, goal_list, action_label_list, sampler_list)
# os.makedirs(cfg.exp_dir, exist_ok=True)
vertices = None
for i in range(cfg.batch_size):
keypoint_gene_torch = torch.from_numpy(points_all[i]).reshape(-1, cfg.dataset.nb_joints * 3).to(device)
pose, transl, left_hand, right_hand, vertices = joints_to_smpl(model_joints_to_smplx, keypoint_gene_torch, cfg.dataset.joints_ind, cfg.interp_s)
# output_data = {'transl': transl, 'body_pose': pose[:, 3:], 'global_orient': pose[:, :3],
# 'id': 0}
# print(output_data)
# with open(os.path.join(cfg.exp_dir, f'{method_name}_{lid}_{i}.pkl'), 'wb') as f:
# pkl.dump(output_data, f)
# vertices = np.load('/home/jiangnan/SyntheticHSI/Gradio_demo/vertices.npy', allow_pickle=True)
# np.save('/home/jiangnan/SyntheticHSI/Gradio_demo/vertices.npy', vertices)
return vertices.tolist()
# v = sample()
#
#
# return v
# def load_dataset_meta(cfg):
# metas = np.load(cfg.)
# if __name__ == '__main__':
# OmegaConf.register_resolver("times_three", times_three)
# OmegaConf.register_new_resolver("times", lambda x, y: int(x) * int(y))
# sample()
|