Spaces:
Paused
Paused
File size: 4,175 Bytes
aeba71c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import torch
import hydra
import numpy as np
from einops import rearrange
import random
import os
def seed_everything(seed: int):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
def transform_points(x, mat):
shape = x.shape
x = rearrange(x, 'b t (j c) -> b (t j) c', c=3) # B x N x 3
x = torch.einsum('bpc,bck->bpk', mat[:, :3, :3], x.permute(0, 2, 1)) # B x 3 x N N x B x 3
x = x.permute(2, 0, 1) + mat[:, :3, 3]
x = x.permute(1, 0, 2)
x = x.reshape(shape)
return x
def create_meshgrid(bbox, size, batch_size=1):
x = torch.linspace(bbox[0], bbox[1], size[0])
y = torch.linspace(bbox[2], bbox[3], size[1])
z = torch.linspace(bbox[4], bbox[5], size[2])
xx, yy, zz = torch.meshgrid(x, y, z, indexing='ij')
grid = torch.stack([xx, yy, zz], dim=-1).reshape(-1, 3)
grid = grid.repeat(batch_size, 1, 1)
# aug_z = 0.75 + torch.rand(batch_size, 1) * 0.35
# grid[:, :, 2] = grid[:, :, 2] * aug_z
return grid
def zup_to_yup(coord):
# change the coordinate from yup to zup
if len(coord.shape) > 1:
coord = coord[..., [0, 2, 1]]
coord[..., 2] *= -1
else:
coord = coord[[0, 2, 1]]
coord[2] *= -1
return coord
def rigid_transform_3D(A, B, scale=False):
assert len(A) == len(B)
N = A.shape[0] # total points
centroid_A = np.mean(A, axis=0)
centroid_B = np.mean(B, axis=0)
# center the points
AA = A - np.tile(centroid_A, (N, 1))
BB = B - np.tile(centroid_B, (N, 1))
# dot is matrix multiplication for array
if scale:
H = np.transpose(BB) * AA / N
else:
H = np.transpose(BB) * AA
U, S, Vt = np.linalg.svd(H)
R = Vt.T * U.T
# special reflection case
if np.linalg.det(R) < 0:
print("Reflection detected")
# return None, None, None
Vt[2, :] *= -1
R = Vt.T * U.T
if scale:
varA = np.var(A, axis=0).sum()
c = 1 / (1 / varA * np.sum(S)) # scale factor
t = -R * (centroid_B.T * c) + centroid_A.T
else:
c = 1
t = -R * centroid_B.T + centroid_A.T
return c, R, t
def find_free_port():
from contextlib import closing
import socket
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s:
s.bind(('', 0))
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
return str(s.getsockname()[1])
def extract(a, t, x_shape):
batch_size = t.shape[0]
out = a.gather(-1, t.cpu())
return out.reshape(batch_size, *((1,) * (len(x_shape) - 1))).to(t.device)
def linear_beta_schedule(timesteps):
beta_start = 0.0001
beta_end = 0.02
return torch.linspace(beta_start, beta_end, timesteps)
def init_model(model_cfg, device, eval, load_state_dict=False):
model = hydra.utils.instantiate(model_cfg)
if eval:
load_state_dict_eval(model, model_cfg.ckpt, device=device)
else:
model = model.to(device)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[device], broadcast_buffers=False,
find_unused_parameters=True)
if load_state_dict:
model.module.load_state_dict(torch.load(model_cfg.ckpt))
model.train()
return model
def load_state_dict_eval(model, state_dict_path, map_location='cuda:0', device='cuda'):
state_dict = torch.load(state_dict_path, map_location=map_location)
key_list = [key for key in state_dict.keys()]
for old_key in key_list:
new_key = old_key.replace('module.', '')
state_dict[new_key] = state_dict.pop(old_key)
model.load_state_dict(state_dict)
model.to(device)
model.eval()
class dotDict(dict):
"""dot.notation access to dictionary attributes"""
def __getattr__(*args):
val = dict.get(*args)
return dotDict(val) if type(val) is dict else val
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__ |