Spaces:
Runtime error
Runtime error
joaopaulopresa
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,157 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import json
|
3 |
+
from data_module import faq_data, model_options
|
4 |
+
import uuid
|
5 |
+
from chat_handler import ChatHandler
|
6 |
|
7 |
+
chat = ChatHandler()
|
8 |
+
def add_custom_css():
|
9 |
+
st.markdown("""
|
10 |
+
<style>
|
11 |
+
.css-1d391kg { width: 35%; }
|
12 |
+
</style>
|
13 |
+
""", unsafe_allow_html=True)
|
14 |
+
def generate_user_id():
|
15 |
+
new_id = chat.generate_id()
|
16 |
+
return new_id
|
17 |
+
|
18 |
+
def clear_history(user_id):
|
19 |
+
chat.clear_history(user_id)
|
20 |
+
return 'response'
|
21 |
+
|
22 |
+
if 'user_id' not in st.session_state:
|
23 |
+
st.session_state['user_id'] = generate_user_id()
|
24 |
+
|
25 |
+
with open("embeddings_db_model.json", "r") as file:
|
26 |
+
embedding_models = json.load(file)
|
27 |
+
embedding_model_names = [model["model"] for model in embedding_models]
|
28 |
+
|
29 |
+
agent_types = [
|
30 |
+
'JSON_CHAT_MODEL',
|
31 |
+
'REACT_TEXT'
|
32 |
+
]
|
33 |
+
selected_model = st.sidebar.selectbox("Escolha o Modelo LLM", model_options)
|
34 |
+
selected_embedding_model = st.sidebar.selectbox("Escolha o Modelo de Embedding", embedding_model_names)
|
35 |
+
selected_embedding_dir = next(item for item in embedding_models if item["model"] == selected_embedding_model)["dir"]
|
36 |
+
selected_agent_type = st.sidebar.selectbox("Escolha o Tipo de Agent", agent_types)
|
37 |
+
|
38 |
+
|
39 |
+
add_custom_css()
|
40 |
+
with st.sidebar:
|
41 |
+
st.write("## Opções de Controle")
|
42 |
+
if st.button('Limpar Histórico'):
|
43 |
+
# Fazer a requisição para limpar o histórico
|
44 |
+
response = clear_history(st.session_state['user_id'])
|
45 |
+
if response:
|
46 |
+
st.session_state.messages = [{"role": "assistant", "content": "Histórico limpo. Pode começar uma nova conversa."}]
|
47 |
+
st.rerun()
|
48 |
+
else:
|
49 |
+
st.error("Erro ao limpar o histórico")
|
50 |
+
with st.container():
|
51 |
+
col1, col2 = st.columns([1, 1])
|
52 |
+
with col1:
|
53 |
+
st.caption("LLM:")
|
54 |
+
st.write(selected_model)
|
55 |
+
with col2:
|
56 |
+
st.caption("Embeddings:")
|
57 |
+
st.write(selected_embedding_model)
|
58 |
+
|
59 |
+
st.title("⚖️ ChatBot Direito Tributário")
|
60 |
+
st.caption("Direito Tributário da Pessoa Jurídica")
|
61 |
+
st.caption("Projeto do Workshop de LLM UFG")
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
if "messages" not in st.session_state:
|
66 |
+
st.session_state["messages"] = [{"role": "assistant", "content": "Olá como posso ajudar?"}]
|
67 |
+
if "faq_question" not in st.session_state:
|
68 |
+
st.session_state["faq_question"] = None
|
69 |
+
|
70 |
+
# Input de chat do usuário
|
71 |
+
for msg in st.session_state.messages:
|
72 |
+
if msg['role'] == 'assistant':
|
73 |
+
img = "server_icon.png"
|
74 |
+
else:
|
75 |
+
img = 'user_icon.png'
|
76 |
+
st.chat_message(msg["role"],avatar=img).write(msg["content"])
|
77 |
+
|
78 |
+
def process_question(question):
|
79 |
+
st.session_state.messages.append({"role": "user", "content": question})
|
80 |
+
st.chat_message("user", avatar="user_icon.png").write(question)
|
81 |
+
|
82 |
+
with st.chat_message("assistant", avatar="server_icon.png"):
|
83 |
+
with st.spinner("Thinking..."):
|
84 |
+
data = dict(
|
85 |
+
user_id=st.session_state['user_id'],
|
86 |
+
text= question,
|
87 |
+
embedding_model= selected_embedding_model,
|
88 |
+
embedding_dir= selected_embedding_dir,
|
89 |
+
model= selected_model,
|
90 |
+
agent_type=selected_agent_type
|
91 |
+
)
|
92 |
+
|
93 |
+
msg,intermediary_steps = chat.post_message(message=data)
|
94 |
+
st.write(str(msg))
|
95 |
+
st.session_state.messages.append({"role": "assistant", "content": msg})
|
96 |
+
# Adicionando os passos intermediários
|
97 |
+
#intermediary_steps = response['response']['intermediate_steps']
|
98 |
+
# intermediary_steps = []
|
99 |
+
|
100 |
+
if intermediary_steps:
|
101 |
+
with st.expander("Ver Passos Intermediários"):
|
102 |
+
if intermediary_steps[0] == 'erro':
|
103 |
+
st.markdown("## ERROR...\n")
|
104 |
+
else:
|
105 |
+
st.markdown("## > Entering new AgentExecutor chain...\n")
|
106 |
+
for index, step in enumerate(intermediary_steps, start=1):
|
107 |
+
# action = step[0].get('tool', 'Unknown')
|
108 |
+
action = step[0].tool if hasattr(step[0], 'tool') else 'Unknown'
|
109 |
+
# action_input = step[0].get('tool_input', 'N/A')
|
110 |
+
# log = step[0].get('log', 'No log available')
|
111 |
+
action_input = step[0].tool_input if hasattr(step[0], 'tool_input') else 'N/A'
|
112 |
+
log = step[0].log if hasattr(step[0], 'log') else 'No log available'
|
113 |
+
st.markdown(f"**Passo {index}:**")
|
114 |
+
st.markdown(f" **Ação:** `{action}`")
|
115 |
+
st.markdown(f" **Entrada da Ação:** `{action_input}`")
|
116 |
+
st.code(log, language='json')
|
117 |
+
st.markdown("---")
|
118 |
+
# Adiciona a ação "Final Answer" ao final dos passos
|
119 |
+
st.markdown("**Ação:** Final Answer")
|
120 |
+
st.markdown(f"**Entrada da Ação:** `{msg}`")
|
121 |
+
st.markdown("## > Finished chain.")
|
122 |
+
else:
|
123 |
+
with st.expander("Ver Passos Intermediários"):
|
124 |
+
st.markdown("#### > Entering new AgentExecutor chain...\n")
|
125 |
+
st.markdown("**Ação:** Final Answer")
|
126 |
+
st.markdown(f"**Entrada da Ação:** `{msg}`")
|
127 |
+
st.markdown("#### > Finished chain...")
|
128 |
+
|
129 |
+
def add_faq_question_to_chat(question):
|
130 |
+
st.session_state["faq_question"] = question
|
131 |
+
|
132 |
+
# Barra lateral com perguntas frequentes
|
133 |
+
with st.sidebar:
|
134 |
+
st.write("## Perguntas Frequentes")
|
135 |
+
for index, item in enumerate(faq_data, start=1):
|
136 |
+
question_with_number = f"{index}\. {item['question']}"
|
137 |
+
expander = st.expander(question_with_number, expanded=False)
|
138 |
+
|
139 |
+
with expander:
|
140 |
+
st.write(item["answer"])
|
141 |
+
button_key = f"button_{index}"
|
142 |
+
if st.button("Enviar esta pergunta", key=button_key):
|
143 |
+
st.session_state['selected_question'] = item["question"]
|
144 |
+
|
145 |
+
if 'selected_question' in st.session_state and st.session_state['selected_question']:
|
146 |
+
add_faq_question_to_chat(st.session_state['selected_question'])
|
147 |
+
del st.session_state['selected_question']
|
148 |
+
|
149 |
+
|
150 |
+
|
151 |
+
if st.session_state["faq_question"]:
|
152 |
+
process_question(st.session_state["faq_question"])
|
153 |
+
st.session_state["faq_question"] = None
|
154 |
+
|
155 |
+
|
156 |
+
if prompt := st.chat_input():
|
157 |
+
process_question(prompt)
|