from langchain.chat_models import ChatOpenAI # from langchain_community.document_loaders import WebBaseLoader # from langchain.text_splitter import RecursiveCharacterTextSplitter import gradio as gr from langchain_pinecone import Pinecone from langchain_openai import OpenAIEmbeddings , ChatOpenAI from langchain.prompts import PromptTemplate from langchain.chains import RetrievalQA import os os.environ["PINECONE_API_KEY"] = "9952de06-975b-4ca4-9908-491e8d08328a" os.environ["OPENAI_API_KEY"]="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" # create embeddings and store in vector database (Pinecone) embeddings=OpenAIEmbeddings() #docsearch=Pinecone.from_texts([t.page_content for t in document_chunks],embeddings,index_name="index_name") llm = ChatOpenAI(temperature=0, model='gpt-3.5-turbo-16k') # If you already have embeddings stored , you can load it using below code vector_search=Pinecone.from_existing_index("erginouswebsite",embeddings) template = """You are provided with a content related to the company. You will be asked any question related to the company. If you don't know ,just say I don't know the answer'. {context} Question: {question} Helpful Answer:""" QA_CHAIN_PROMPT = PromptTemplate(input_variables=["question"],template=template) qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=vector_search.as_retriever(),chain_type_kwargs={"prompt": QA_CHAIN_PROMPT}) def predict(message, history): gpt_response = qa.invoke(message) return gpt_response['result'] gr.ChatInterface(predict,chatbot=gr.Chatbot(height=300), textbox=gr.Textbox(placeholder="Ask me a question", container=False, scale=7), title="AI Assistant Chatbot", description="Chatbot AI Assistant", theme="soft", examples=["Provide address of the company", "Solutions provided by the company", "Career opportunities in company"], cache_examples=True, retry_btn=None, undo_btn="Delete Previous", clear_btn="Clear",).launch(share=True , server_name="0.0.0.0" ,server_port=8080)