joermd commited on
Commit
cc064f9
·
verified ·
1 Parent(s): bfc7dff

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +103 -162
app.py CHANGED
@@ -1,166 +1,107 @@
1
- import spaces
2
  import os
3
- import re
4
- import time
5
  import gradio as gr
6
- import torch
7
- from transformers import AutoModelForCausalLM
8
- from transformers import TextIteratorStreamer
9
- from threading import Thread
10
-
11
- model_name = 'joermd/speedy-llama2'
12
-
13
- # load model
14
- model = AutoModelForCausalLM.from_pretrained(model_name,
15
- torch_dtype=torch.bfloat16,
16
- multimodal_max_length=8192,
17
- token=os.getenv('HUGGINGFACE_TOKEN'),
18
- trust_remote_code=True).to(device='cuda')
19
- text_tokenizer = model.get_text_tokenizer()
20
- visual_tokenizer = model.get_visual_tokenizer()
21
- streamer = TextIteratorStreamer(text_tokenizer, skip_prompt=True, skip_special_tokens=True)
22
- image_placeholder = '<image>'
23
- cur_dir = os.path.dirname(os.path.abspath(__file__))
24
-
25
- def submit_chat(chatbot, text_input):
26
- response = ''
27
- chatbot.append((text_input, response))
28
- return chatbot ,''
29
-
30
- @spaces.GPU
31
- def ovis_chat(chatbot, image_input):
32
- # preprocess inputs
33
- conversations = []
34
- response = ""
35
- text_input = chatbot[-1][0]
36
- for query, response in chatbot[:-1]:
37
- conversations.append({
38
- "from": "human",
39
- "value": query
40
- })
41
- conversations.append({
42
- "from": "gpt",
43
- "value": response
44
- })
45
- text_input = text_input.replace(image_placeholder, '')
46
- conversations.append({
47
- "from": "human",
48
- "value": text_input
49
- })
50
- if image_input is not None:
51
- conversations[0]["value"] = image_placeholder + '\n' + conversations[0]["value"]
52
- prompt, input_ids, pixel_values = model.preprocess_inputs(conversations, [image_input])
53
- attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id)
54
- input_ids = input_ids.unsqueeze(0).to(device=model.device)
55
- attention_mask = attention_mask.unsqueeze(0).to(device=model.device)
56
- if image_input is None:
57
- pixel_values = [None]
58
- else:
59
- pixel_values = [pixel_values.to(dtype=visual_tokenizer.dtype, device=visual_tokenizer.device)]
60
-
61
- with torch.inference_mode():
62
- gen_kwargs = dict(
63
- max_new_tokens=512,
64
- do_sample=False,
65
- top_p=None,
66
- top_k=None,
67
- temperature=None,
68
- repetition_penalty=None,
69
- eos_token_id=model.generation_config.eos_token_id,
70
- pad_token_id=text_tokenizer.pad_token_id,
71
- use_cache=True
72
  )
73
- response = ""
74
- thread = Thread(target=model.generate,
75
- kwargs={"inputs": input_ids,
76
- "pixel_values": pixel_values,
77
- "attention_mask": attention_mask,
78
- "streamer": streamer,
79
- **gen_kwargs})
80
- thread.start()
81
- for new_text in streamer:
82
- response += new_text
83
- chatbot[-1][1] = response
84
- yield chatbot
85
- thread.join()
86
- # debug
87
- print('*'*60)
88
- print('*'*60)
89
- print('OVIS_CONV_START')
90
- for i, (request, answer) in enumerate(chatbot[:-1], 1):
91
- print(f'Q{i}:\n {request}')
92
- print(f'A{i}:\n {answer}')
93
- print('New_Q:\n', text_input)
94
- print('New_A:\n', response)
95
- print('OVIS_CONV_END')
96
-
97
- def clear_chat():
98
- return [], None, ""
99
-
100
- with open(f"{cur_dir}/resource/logo.svg", "r", encoding="utf-8") as svg_file:
101
- svg_content = svg_file.read()
102
- font_size = "2.5em"
103
- svg_content = re.sub(r'(<svg[^>]*)(>)', rf'\1 height="{font_size}" style="vertical-align: middle; display: inline-block;"\2', svg_content)
104
- html = f"""
105
- <p align="center" style="font-size: {font_size}; line-height: 1;">
106
- <span style="display: inline-block; vertical-align: middle;">{svg_content}</span>
107
- <span style="display: inline-block; vertical-align: middle;">{model_name.split('/')[-1]}</span>
108
- </p>
109
- <center><font size=3><b>Ovis</b> has been open-sourced on <a href='https://huggingface.co/{model_name}'>😊 Huggingface</a> and <a href='https://github.com/AIDC-AI/Ovis'>🌟 GitHub</a>. If you find Ovis useful, a like❤️ or a star🌟 would be appreciated.</font></center>
110
- """
111
-
112
- latex_delimiters_set = [{
113
- "left": "\\(",
114
- "right": "\\)",
115
- "display": False
116
- }, {
117
- "left": "\\begin{equation}",
118
- "right": "\\end{equation}",
119
- "display": True
120
- }, {
121
- "left": "\\begin{align}",
122
- "right": "\\end{align}",
123
- "display": True
124
- }, {
125
- "left": "\\begin{alignat}",
126
- "right": "\\end{alignat}",
127
- "display": True
128
- }, {
129
- "left": "\\begin{gather}",
130
- "right": "\\end{gather}",
131
- "display": True
132
- }, {
133
- "left": "\\begin{CD}",
134
- "right": "\\end{CD}",
135
- "display": True
136
- }, {
137
- "left": "\\[",
138
- "right": "\\]",
139
- "display": True
140
- }]
141
-
142
- text_input = gr.Textbox(label="prompt", placeholder="Enter your text here...", lines=1, container=False)
143
- with gr.Blocks(title=model_name.split('/')[-1], theme=gr.themes.Ocean()) as demo:
144
- gr.HTML(html)
145
  with gr.Row():
146
- with gr.Column(scale=3):
147
- image_input = gr.Image(label="image", height=350, type="pil")
148
- gr.Examples(
149
- examples=[
150
- [f"{cur_dir}/examples/case1.png", "explain this model to me."],
151
- [f"{cur_dir}/examples/case2.png", "Which city is in the picture?"],
152
- ],
153
- inputs=[image_input, text_input]
154
- )
155
- with gr.Column(scale=7):
156
- chatbot = gr.Chatbot(label="Ovis", layout="panel", height=600, show_copy_button=True, latex_delimiters=latex_delimiters_set)
157
- text_input.render()
158
- with gr.Row():
159
- send_btn = gr.Button("Send", variant="primary")
160
- clear_btn = gr.Button("Clear", variant="secondary")
161
-
162
- send_click_event = send_btn.click(submit_chat, [chatbot, text_input], [chatbot, text_input]).then(ovis_chat,[chatbot, image_input],chatbot)
163
- submit_event = text_input.submit(submit_chat, [chatbot, text_input], [chatbot, text_input]).then(ovis_chat,[chatbot, image_input],chatbot)
164
- clear_btn.click(clear_chat, outputs=[chatbot, image_input, text_input])
165
-
166
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
+ from typing import Optional, Tuple
3
+
4
  import gradio as gr
5
+ from langchain.chains import ConversationChain
6
+ from langchain.llms import OpenAI
7
+ from threading import Lock
8
+
9
+
10
+ def load_chain():
11
+ """Logic for loading the chain you want to use should go here."""
12
+ llm = OpenAI(temperature=0)
13
+ chain = ConversationChain(llm=llm)
14
+ return chain
15
+
16
+
17
+ def set_openai_api_key(api_key: str):
18
+ """Set the api key and return chain.
19
+
20
+ If no api_key, then None is returned.
21
+ """
22
+ if api_key:
23
+ os.environ["OPENAI_API_KEY"] = api_key
24
+ chain = load_chain()
25
+ os.environ["OPENAI_API_KEY"] = ""
26
+ return chain
27
+
28
+ class ChatWrapper:
29
+
30
+ def __init__(self):
31
+ self.lock = Lock()
32
+ def __call__(
33
+ self, api_key: str, inp: str, history: Optional[Tuple[str, str]], chain: Optional[ConversationChain]
34
+ ):
35
+ """Execute the chat functionality."""
36
+ self.lock.acquire()
37
+ try:
38
+ history = history or []
39
+ # If chain is None, that is because no API key was provided.
40
+ if chain is None:
41
+ history.append((inp, "Please paste your OpenAI key to use"))
42
+ return history, history
43
+ # Set OpenAI key
44
+ import openai
45
+ openai.api_key = api_key
46
+ # Run chain and append input.
47
+ output = chain.run(input=inp)
48
+ history.append((inp, output))
49
+ except Exception as e:
50
+ raise e
51
+ finally:
52
+ self.lock.release()
53
+ return history, history
54
+
55
+ chat = ChatWrapper()
56
+
57
+ block = gr.Blocks(css=".gradio-container {background-color: lightgray}")
58
+
59
+ with block:
60
+ with gr.Row():
61
+ gr.Markdown("<h3><center>LangChain Demo</center></h3>")
62
+
63
+ openai_api_key_textbox = gr.Textbox(
64
+ placeholder="Paste your OpenAI API key (sk-...)",
65
+ show_label=False,
66
+ lines=1,
67
+ type="password",
 
 
 
68
  )
69
+
70
+ chatbot = gr.Chatbot()
71
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
  with gr.Row():
73
+ message = gr.Textbox(
74
+ label="What's your question?",
75
+ placeholder="What's the answer to life, the universe, and everything?",
76
+ lines=1,
77
+ )
78
+ submit = gr.Button(value="Send", variant="secondary").style(full_width=False)
79
+
80
+ gr.Examples(
81
+ examples=[
82
+ "Hi! How's it going?",
83
+ "What should I do tonight?",
84
+ "Whats 2 + 2?",
85
+ ],
86
+ inputs=message,
87
+ )
88
+
89
+ gr.HTML("Demo application of a LangChain chain.")
90
+
91
+ gr.HTML(
92
+ "<center>Powered by <a href='https://github.com/hwchase17/langchain'>LangChain 🦜️🔗</a></center>"
93
+ )
94
+
95
+ state = gr.State()
96
+ agent_state = gr.State()
97
+
98
+ submit.click(chat, inputs=[openai_api_key_textbox, message, state, agent_state], outputs=[chatbot, state])
99
+ message.submit(chat, inputs=[openai_api_key_textbox, message, state, agent_state], outputs=[chatbot, state])
100
+
101
+ openai_api_key_textbox.change(
102
+ set_openai_api_key,
103
+ inputs=[openai_api_key_textbox],
104
+ outputs=[agent_state],
105
+ )
106
+
107
+ block.launch(debug=True)