|
import os |
|
import shutil |
|
import subprocess |
|
|
|
import gradio as gr |
|
|
|
from huggingface_hub import create_repo, HfApi |
|
from huggingface_hub import snapshot_download |
|
from huggingface_hub import whoami |
|
from huggingface_hub import ModelCard |
|
|
|
from textwrap import dedent |
|
|
|
api = HfApi() |
|
|
|
def process_model(model_id, q_method, hf_token): |
|
|
|
MODEL_NAME = model_id.split('/')[-1] |
|
fp16 = f"{MODEL_NAME}/{MODEL_NAME.lower()}.fp16.bin" |
|
|
|
username = whoami(hf_token)["name"] |
|
|
|
snapshot_download(repo_id=model_id, local_dir = f"{MODEL_NAME}", local_dir_use_symlinks=False) |
|
print("Model downloaded successully!") |
|
|
|
fp16_conversion = f"python llama.cpp/convert.py {MODEL_NAME} --outtype f16 --outfile {fp16}" |
|
subprocess.run(fp16_conversion, shell=True) |
|
print("Model converted to fp16 successully!") |
|
|
|
qtype = f"{MODEL_NAME}/{MODEL_NAME.lower()}.{q_method.upper()}.gguf" |
|
quantise_ggml = f"./llama.cpp/quantize {fp16} {qtype} {q_method}" |
|
subprocess.run(quantise_ggml, shell=True) |
|
print("Quantised successfully!") |
|
|
|
|
|
repo_id = f"{username}/{MODEL_NAME}-{q_method}-GGUF" |
|
repo_url = create_repo( |
|
repo_id = repo_id, |
|
repo_type="model", |
|
exist_ok=True, |
|
token=hf_token |
|
) |
|
print("Empty repo created successfully!") |
|
|
|
|
|
card = ModelCard.load(model_id) |
|
card.data.tags = ["llama-cpp"] if card.data.tags is None else card.data.tags + ["llama-cpp"] |
|
card.text = dedent( |
|
f""" |
|
# {repo_id} |
|
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp. |
|
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model. |
|
## Use with llama.cpp |
|
|
|
```bash |
|
brew install ggerganov/ggerganov/llama.cpp |
|
``` |
|
|
|
```bash |
|
llama-cli --hf-repo {repo_id} --model {qtype.split("/")[-1]} -p "The meaning to life and the universe is " |
|
``` |
|
""" |
|
) |
|
card.save(os.path.join(MODEL_NAME, "README-new.md")) |
|
|
|
api.upload_file( |
|
path_or_fileobj=qtype, |
|
path_in_repo=qtype.split("/")[-1], |
|
repo_id=repo_id, |
|
repo_type="model", |
|
) |
|
|
|
api.upload_file( |
|
path_or_fileobj=f"{MODEL_NAME}/README-new.md", |
|
path_in_repo="README.md", |
|
repo_id=repo_id, |
|
repo_type="model", |
|
) |
|
print("Uploaded successfully!") |
|
|
|
shutil.rmtree(MODEL_NAME) |
|
print("Folder cleaned up successfully!") |
|
|
|
return ( |
|
f'Find your repo <a href=\'{repo_url}\' target="_blank" style="text-decoration:underline">here</a>', |
|
"llama.png", |
|
) |
|
|
|
|
|
iface = gr.Interface( |
|
fn=process_model, |
|
inputs=[ |
|
gr.Textbox( |
|
lines=1, |
|
label="Hub Model ID", |
|
info="Model repo ID" |
|
), |
|
gr.Dropdown( |
|
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"], |
|
label="Quantization Method", |
|
info="GGML quantisation type" |
|
), |
|
gr.Textbox( |
|
lines=1, |
|
label="HF Write Token", |
|
info="https://hf.co/settings/token" |
|
) |
|
], |
|
outputs=[ |
|
gr.Markdown(label="output"), |
|
gr.Image(show_label=False), |
|
], |
|
title="Create your own GGUF Quants!", |
|
description="Create GGUF quants from any Hugging Face repository! You need to specify a write token obtained in https://hf.co/settings/tokens.", |
|
article="<p>Find your write token at <a href='https://huggingface.co/settings/tokens' target='_blank'>token settings</a></p>", |
|
|
|
) |
|
|
|
|
|
iface.launch(debug=True) |