jofaichow commited on
Commit
9a42d26
1 Parent(s): 699daf6

Added more KPI choices for MMC

Browse files
Files changed (1) hide show
  1. app/app.R +15 -4
app/app.R CHANGED
@@ -346,20 +346,26 @@ ui <- shinydashboardPlus::dashboardPage(
346
  "FNCv3: Feature Neutral Correlation with respect to the FNCv3 features",
347
  # "CORJ60: CORRelation with target Jerome_v4_60", # add this later
348
 
 
 
 
 
 
349
  "CWMM: Correlation With the Meta Model",
350
  "MCWNM: Maximum Correlation With Numerai Models staked at least 10 NMR",
351
  "APCWNM: Average Pairwise Correlation With Numerai Models staked at least 10 NMR",
352
 
 
 
353
  "Score Multipliers: 0.5 x CORRv2",
354
  "Score Multipliers: 1.5 x CORRv2",
355
  "Score Multipliers: 2.0 x CORRv2",
356
  "Score Multipliers: 2.0 x CORRv2 + 0.5 x TC",
357
  "Score Multipliers: 2.0 x CORRv2 + 1.0 x TC",
358
 
359
- "Percentile: CORRv2",
360
- "Percentile: TC",
361
- "Percentile: FNCv3",
362
 
 
 
363
  "Payout",
364
  "Rate of Return (%): Payout / Stake x 100"),
365
  multiple = FALSE,
@@ -680,6 +686,7 @@ ui <- shinydashboardPlus::dashboardPage(
680
  - #### **0.2.2** — Sped up chart rendering with `toWebGL()`
681
  - #### **0.2.3** — Added new `MMC` - Ref: https://forum.numer.ai/t/changing-scoring-payouts-again-to-mmc-only/6794/27
682
  - #### **0.2.4** — Added `MMC` to `Payout Sim`
 
683
  "),
684
 
685
  br(),
@@ -698,7 +705,7 @@ ui <- shinydashboardPlus::dashboardPage(
698
 
699
  footer = shinydashboardPlus::dashboardFooter(
700
  left = "Powered by ❤️, ☕, Shiny, and 🤗 Spaces",
701
- right = paste0("Version 0.2.4"))
702
 
703
  )
704
 
@@ -1079,6 +1086,7 @@ server <- function(input, output) {
1079
  if (input$kpi_choice == "APCWNM: Average Pairwise Correlation With Numerai Models staked at least 10 NMR") d_pref[, KPI := apcwnm]
1080
 
1081
  # Calculate Score Multiplies
 
1082
  if (input$kpi_choice == "Score Multipliers: 0.5 x CORRv2") d_pref[, KPI := 0.5 * corrV2]
1083
  if (input$kpi_choice == "Score Multipliers: 1.5 x CORRv2") d_pref[, KPI := 1.5 * corrV2]
1084
  if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2") d_pref[, KPI := 2.0 * corrV2]
@@ -1086,6 +1094,7 @@ server <- function(input, output) {
1086
  if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2 + 1.0 x TC") d_pref[, KPI := 2.0 * corrV2 + 1.0 * tc]
1087
 
1088
  # Extract Percentile
 
1089
  if (input$kpi_choice == "Percentile: CORRv2") d_pref[, KPI := corrV2_pct]
1090
  if (input$kpi_choice == "Percentile: TC") d_pref[, KPI := tc_pct]
1091
  if (input$kpi_choice == "Percentile: FNCv3") d_pref[, KPI := fncV3_pct]
@@ -1567,12 +1576,14 @@ server <- function(input, output) {
1567
  if (input$kpi_choice == "MCWNM: Maximum Correlation With Numerai Models staked at least 10 NMR") y_label <- "MCWNM"
1568
  if (input$kpi_choice == "APCWNM: Average Pairwise Correlation With Numerai Models staked at least 10 NMR") y_label <- "APCWNM"
1569
 
 
1570
  if (input$kpi_choice == "Score Multipliers: 0.5 x CORRv2") y_label <- "0.5 x CORRv2"
1571
  if (input$kpi_choice == "Score Multipliers: 1.5 x CORRv2") y_label <- "1.5 x CORRv2"
1572
  if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2") y_label <- "2.0 x CORRv2"
1573
  if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2 + 0.5 x TC") y_label <- "2.0 x CORRv2 + 0.5 x TC"
1574
  if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2 + 1.0 x TC") y_label <- "2.0 x CORRv2 + 1.0 x TC"
1575
 
 
1576
  if (input$kpi_choice == "Percentile: CORRv2") y_label <- "CORRv2 Percentile"
1577
  if (input$kpi_choice == "Percentile: TC") y_label <- "TC Percentile"
1578
  if (input$kpi_choice == "Percentile: FNCv3") y_label <- "FNCv3 Percentile"
 
346
  "FNCv3: Feature Neutral Correlation with respect to the FNCv3 features",
347
  # "CORJ60: CORRelation with target Jerome_v4_60", # add this later
348
 
349
+ "Percentile: MMCv2",
350
+ "Percentile: CORRv2",
351
+ "Percentile: TC",
352
+ "Percentile: FNCv3",
353
+
354
  "CWMM: Correlation With the Meta Model",
355
  "MCWNM: Maximum Correlation With Numerai Models staked at least 10 NMR",
356
  "APCWNM: Average Pairwise Correlation With Numerai Models staked at least 10 NMR",
357
 
358
+
359
+ "Score Multipliers: 2.0 x MMCv2",
360
  "Score Multipliers: 0.5 x CORRv2",
361
  "Score Multipliers: 1.5 x CORRv2",
362
  "Score Multipliers: 2.0 x CORRv2",
363
  "Score Multipliers: 2.0 x CORRv2 + 0.5 x TC",
364
  "Score Multipliers: 2.0 x CORRv2 + 1.0 x TC",
365
 
 
 
 
366
 
367
+
368
+
369
  "Payout",
370
  "Rate of Return (%): Payout / Stake x 100"),
371
  multiple = FALSE,
 
686
  - #### **0.2.2** — Sped up chart rendering with `toWebGL()`
687
  - #### **0.2.3** — Added new `MMC` - Ref: https://forum.numer.ai/t/changing-scoring-payouts-again-to-mmc-only/6794/27
688
  - #### **0.2.4** — Added `MMC` to `Payout Sim`
689
+ - #### **0.2.5** — Added more KPI charts and tables
690
  "),
691
 
692
  br(),
 
705
 
706
  footer = shinydashboardPlus::dashboardFooter(
707
  left = "Powered by ❤️, ☕, Shiny, and 🤗 Spaces",
708
+ right = paste0("Version 0.2.5"))
709
 
710
  )
711
 
 
1086
  if (input$kpi_choice == "APCWNM: Average Pairwise Correlation With Numerai Models staked at least 10 NMR") d_pref[, KPI := apcwnm]
1087
 
1088
  # Calculate Score Multiplies
1089
+ if (input$kpi_choice == "Score Multipliers: 2.0 x MMCv2") d_pref[, KPI := 2.0 * mmc]
1090
  if (input$kpi_choice == "Score Multipliers: 0.5 x CORRv2") d_pref[, KPI := 0.5 * corrV2]
1091
  if (input$kpi_choice == "Score Multipliers: 1.5 x CORRv2") d_pref[, KPI := 1.5 * corrV2]
1092
  if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2") d_pref[, KPI := 2.0 * corrV2]
 
1094
  if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2 + 1.0 x TC") d_pref[, KPI := 2.0 * corrV2 + 1.0 * tc]
1095
 
1096
  # Extract Percentile
1097
+ if (input$kpi_choice == "Percentile: MMCv2") d_pref[, KPI := mmc_pct]
1098
  if (input$kpi_choice == "Percentile: CORRv2") d_pref[, KPI := corrV2_pct]
1099
  if (input$kpi_choice == "Percentile: TC") d_pref[, KPI := tc_pct]
1100
  if (input$kpi_choice == "Percentile: FNCv3") d_pref[, KPI := fncV3_pct]
 
1576
  if (input$kpi_choice == "MCWNM: Maximum Correlation With Numerai Models staked at least 10 NMR") y_label <- "MCWNM"
1577
  if (input$kpi_choice == "APCWNM: Average Pairwise Correlation With Numerai Models staked at least 10 NMR") y_label <- "APCWNM"
1578
 
1579
+ if (input$kpi_choice == "Score Multipliers: 2.0 x MMCv2") y_label <- "2.0 x MMCv2"
1580
  if (input$kpi_choice == "Score Multipliers: 0.5 x CORRv2") y_label <- "0.5 x CORRv2"
1581
  if (input$kpi_choice == "Score Multipliers: 1.5 x CORRv2") y_label <- "1.5 x CORRv2"
1582
  if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2") y_label <- "2.0 x CORRv2"
1583
  if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2 + 0.5 x TC") y_label <- "2.0 x CORRv2 + 0.5 x TC"
1584
  if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2 + 1.0 x TC") y_label <- "2.0 x CORRv2 + 1.0 x TC"
1585
 
1586
+ if (input$kpi_choice == "Percentile: MMCv2") y_label <- "MMCv2 Percentile"
1587
  if (input$kpi_choice == "Percentile: CORRv2") y_label <- "CORRv2 Percentile"
1588
  if (input$kpi_choice == "Percentile: TC") y_label <- "TC Percentile"
1589
  if (input$kpi_choice == "Percentile: FNCv3") y_label <- "FNCv3 Percentile"