Spaces:
Running
Running
Added more KPI choices for MMC
Browse files
app/app.R
CHANGED
@@ -346,20 +346,26 @@ ui <- shinydashboardPlus::dashboardPage(
|
|
346 |
"FNCv3: Feature Neutral Correlation with respect to the FNCv3 features",
|
347 |
# "CORJ60: CORRelation with target Jerome_v4_60", # add this later
|
348 |
|
|
|
|
|
|
|
|
|
|
|
349 |
"CWMM: Correlation With the Meta Model",
|
350 |
"MCWNM: Maximum Correlation With Numerai Models staked at least 10 NMR",
|
351 |
"APCWNM: Average Pairwise Correlation With Numerai Models staked at least 10 NMR",
|
352 |
|
|
|
|
|
353 |
"Score Multipliers: 0.5 x CORRv2",
|
354 |
"Score Multipliers: 1.5 x CORRv2",
|
355 |
"Score Multipliers: 2.0 x CORRv2",
|
356 |
"Score Multipliers: 2.0 x CORRv2 + 0.5 x TC",
|
357 |
"Score Multipliers: 2.0 x CORRv2 + 1.0 x TC",
|
358 |
|
359 |
-
"Percentile: CORRv2",
|
360 |
-
"Percentile: TC",
|
361 |
-
"Percentile: FNCv3",
|
362 |
|
|
|
|
|
363 |
"Payout",
|
364 |
"Rate of Return (%): Payout / Stake x 100"),
|
365 |
multiple = FALSE,
|
@@ -680,6 +686,7 @@ ui <- shinydashboardPlus::dashboardPage(
|
|
680 |
- #### **0.2.2** — Sped up chart rendering with `toWebGL()`
|
681 |
- #### **0.2.3** — Added new `MMC` - Ref: https://forum.numer.ai/t/changing-scoring-payouts-again-to-mmc-only/6794/27
|
682 |
- #### **0.2.4** — Added `MMC` to `Payout Sim`
|
|
|
683 |
"),
|
684 |
|
685 |
br(),
|
@@ -698,7 +705,7 @@ ui <- shinydashboardPlus::dashboardPage(
|
|
698 |
|
699 |
footer = shinydashboardPlus::dashboardFooter(
|
700 |
left = "Powered by ❤️, ☕, Shiny, and 🤗 Spaces",
|
701 |
-
right = paste0("Version 0.2.
|
702 |
|
703 |
)
|
704 |
|
@@ -1079,6 +1086,7 @@ server <- function(input, output) {
|
|
1079 |
if (input$kpi_choice == "APCWNM: Average Pairwise Correlation With Numerai Models staked at least 10 NMR") d_pref[, KPI := apcwnm]
|
1080 |
|
1081 |
# Calculate Score Multiplies
|
|
|
1082 |
if (input$kpi_choice == "Score Multipliers: 0.5 x CORRv2") d_pref[, KPI := 0.5 * corrV2]
|
1083 |
if (input$kpi_choice == "Score Multipliers: 1.5 x CORRv2") d_pref[, KPI := 1.5 * corrV2]
|
1084 |
if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2") d_pref[, KPI := 2.0 * corrV2]
|
@@ -1086,6 +1094,7 @@ server <- function(input, output) {
|
|
1086 |
if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2 + 1.0 x TC") d_pref[, KPI := 2.0 * corrV2 + 1.0 * tc]
|
1087 |
|
1088 |
# Extract Percentile
|
|
|
1089 |
if (input$kpi_choice == "Percentile: CORRv2") d_pref[, KPI := corrV2_pct]
|
1090 |
if (input$kpi_choice == "Percentile: TC") d_pref[, KPI := tc_pct]
|
1091 |
if (input$kpi_choice == "Percentile: FNCv3") d_pref[, KPI := fncV3_pct]
|
@@ -1567,12 +1576,14 @@ server <- function(input, output) {
|
|
1567 |
if (input$kpi_choice == "MCWNM: Maximum Correlation With Numerai Models staked at least 10 NMR") y_label <- "MCWNM"
|
1568 |
if (input$kpi_choice == "APCWNM: Average Pairwise Correlation With Numerai Models staked at least 10 NMR") y_label <- "APCWNM"
|
1569 |
|
|
|
1570 |
if (input$kpi_choice == "Score Multipliers: 0.5 x CORRv2") y_label <- "0.5 x CORRv2"
|
1571 |
if (input$kpi_choice == "Score Multipliers: 1.5 x CORRv2") y_label <- "1.5 x CORRv2"
|
1572 |
if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2") y_label <- "2.0 x CORRv2"
|
1573 |
if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2 + 0.5 x TC") y_label <- "2.0 x CORRv2 + 0.5 x TC"
|
1574 |
if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2 + 1.0 x TC") y_label <- "2.0 x CORRv2 + 1.0 x TC"
|
1575 |
|
|
|
1576 |
if (input$kpi_choice == "Percentile: CORRv2") y_label <- "CORRv2 Percentile"
|
1577 |
if (input$kpi_choice == "Percentile: TC") y_label <- "TC Percentile"
|
1578 |
if (input$kpi_choice == "Percentile: FNCv3") y_label <- "FNCv3 Percentile"
|
|
|
346 |
"FNCv3: Feature Neutral Correlation with respect to the FNCv3 features",
|
347 |
# "CORJ60: CORRelation with target Jerome_v4_60", # add this later
|
348 |
|
349 |
+
"Percentile: MMCv2",
|
350 |
+
"Percentile: CORRv2",
|
351 |
+
"Percentile: TC",
|
352 |
+
"Percentile: FNCv3",
|
353 |
+
|
354 |
"CWMM: Correlation With the Meta Model",
|
355 |
"MCWNM: Maximum Correlation With Numerai Models staked at least 10 NMR",
|
356 |
"APCWNM: Average Pairwise Correlation With Numerai Models staked at least 10 NMR",
|
357 |
|
358 |
+
|
359 |
+
"Score Multipliers: 2.0 x MMCv2",
|
360 |
"Score Multipliers: 0.5 x CORRv2",
|
361 |
"Score Multipliers: 1.5 x CORRv2",
|
362 |
"Score Multipliers: 2.0 x CORRv2",
|
363 |
"Score Multipliers: 2.0 x CORRv2 + 0.5 x TC",
|
364 |
"Score Multipliers: 2.0 x CORRv2 + 1.0 x TC",
|
365 |
|
|
|
|
|
|
|
366 |
|
367 |
+
|
368 |
+
|
369 |
"Payout",
|
370 |
"Rate of Return (%): Payout / Stake x 100"),
|
371 |
multiple = FALSE,
|
|
|
686 |
- #### **0.2.2** — Sped up chart rendering with `toWebGL()`
|
687 |
- #### **0.2.3** — Added new `MMC` - Ref: https://forum.numer.ai/t/changing-scoring-payouts-again-to-mmc-only/6794/27
|
688 |
- #### **0.2.4** — Added `MMC` to `Payout Sim`
|
689 |
+
- #### **0.2.5** — Added more KPI charts and tables
|
690 |
"),
|
691 |
|
692 |
br(),
|
|
|
705 |
|
706 |
footer = shinydashboardPlus::dashboardFooter(
|
707 |
left = "Powered by ❤️, ☕, Shiny, and 🤗 Spaces",
|
708 |
+
right = paste0("Version 0.2.5"))
|
709 |
|
710 |
)
|
711 |
|
|
|
1086 |
if (input$kpi_choice == "APCWNM: Average Pairwise Correlation With Numerai Models staked at least 10 NMR") d_pref[, KPI := apcwnm]
|
1087 |
|
1088 |
# Calculate Score Multiplies
|
1089 |
+
if (input$kpi_choice == "Score Multipliers: 2.0 x MMCv2") d_pref[, KPI := 2.0 * mmc]
|
1090 |
if (input$kpi_choice == "Score Multipliers: 0.5 x CORRv2") d_pref[, KPI := 0.5 * corrV2]
|
1091 |
if (input$kpi_choice == "Score Multipliers: 1.5 x CORRv2") d_pref[, KPI := 1.5 * corrV2]
|
1092 |
if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2") d_pref[, KPI := 2.0 * corrV2]
|
|
|
1094 |
if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2 + 1.0 x TC") d_pref[, KPI := 2.0 * corrV2 + 1.0 * tc]
|
1095 |
|
1096 |
# Extract Percentile
|
1097 |
+
if (input$kpi_choice == "Percentile: MMCv2") d_pref[, KPI := mmc_pct]
|
1098 |
if (input$kpi_choice == "Percentile: CORRv2") d_pref[, KPI := corrV2_pct]
|
1099 |
if (input$kpi_choice == "Percentile: TC") d_pref[, KPI := tc_pct]
|
1100 |
if (input$kpi_choice == "Percentile: FNCv3") d_pref[, KPI := fncV3_pct]
|
|
|
1576 |
if (input$kpi_choice == "MCWNM: Maximum Correlation With Numerai Models staked at least 10 NMR") y_label <- "MCWNM"
|
1577 |
if (input$kpi_choice == "APCWNM: Average Pairwise Correlation With Numerai Models staked at least 10 NMR") y_label <- "APCWNM"
|
1578 |
|
1579 |
+
if (input$kpi_choice == "Score Multipliers: 2.0 x MMCv2") y_label <- "2.0 x MMCv2"
|
1580 |
if (input$kpi_choice == "Score Multipliers: 0.5 x CORRv2") y_label <- "0.5 x CORRv2"
|
1581 |
if (input$kpi_choice == "Score Multipliers: 1.5 x CORRv2") y_label <- "1.5 x CORRv2"
|
1582 |
if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2") y_label <- "2.0 x CORRv2"
|
1583 |
if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2 + 0.5 x TC") y_label <- "2.0 x CORRv2 + 0.5 x TC"
|
1584 |
if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2 + 1.0 x TC") y_label <- "2.0 x CORRv2 + 1.0 x TC"
|
1585 |
|
1586 |
+
if (input$kpi_choice == "Percentile: MMCv2") y_label <- "MMCv2 Percentile"
|
1587 |
if (input$kpi_choice == "Percentile: CORRv2") y_label <- "CORRv2 Percentile"
|
1588 |
if (input$kpi_choice == "Percentile: TC") y_label <- "TC Percentile"
|
1589 |
if (input$kpi_choice == "Percentile: FNCv3") y_label <- "FNCv3 Percentile"
|