Spaces:
Runtime error
Runtime error
from fastai.text.all import * | |
from huggingface_hub import from_pretrained_fastai | |
import gradio as gr | |
# Cargamos el learner | |
repo_id = "joferngome/Emotions" | |
learner = from_pretrained_fastai(repo_id) | |
labels = learner.dls.vocab | |
# Definimos las etiquetas de nuestro modelo | |
#labels = list(range(28)) | |
labels=["admiration","amusement","anger","annoyance","approval","caring","confusion","curiosity","desire","disappointment","disapproval","disgust","embarrasement", | |
"excitement","fear","gratitude","grief","joy","love","nervousness","optimism","pride","realization","relief","remorse","sadness","surprise","neutral"] | |
example1 = "As the gentle breeze caressed the emerald fields, a symphony of rustling leaves and chirping birds filled the air, creating a harmonious melody that echoed through the tranquil countryside." | |
example2 = "In the midst of a bustling city, amidst the towering skyscrapers and buzzing crowds, two souls found solace in each other's embrace, their love creating a sanctuary of serenity amidst the chaos." | |
example3 = "With each stroke of the artist's brush, the canvas transformed into a vibrant tapestry of colors, capturing the essence of life and evoking emotions that words alone could never convey." | |
# Definimos una función que se encarga de llevar a cabo las predicciones | |
def predict(text): | |
probs= learner.predict(text)[2] | |
# print(pred) | |
# probs = pred['probs'] | |
print(probs) | |
return {labels[i]: float(probs[i]) for i in range(len(labels))} | |
# Creamos la interfaz y la lanzamos. | |
gr.Interface(fn=predict, inputs=gr.inputs.Textbox(), outputs=gr.outputs.Label(),examples=[example1,example2,example3]).launch(share=False,debug=True) | |