Spaces:
Sleeping
Sleeping
Commit
·
b222ec5
0
Parent(s):
Duplicate from YoannLemesle/CLIPictionary
Browse filesCo-authored-by: Yoann Lemesle <YoannLemesle@users.noreply.huggingface.co>
- .Rhistory +0 -0
- .gitattributes +27 -0
- README.md +13 -0
- __pycache__/game.cpython-39.pyc +0 -0
- __pycache__/model.cpython-39.pyc +0 -0
- __pycache__/process.cpython-39.pyc +0 -0
- __pycache__/sentence.cpython-39.pyc +0 -0
- __pycache__/words.cpython-39.pyc +0 -0
- app.py +47 -0
- game.py +140 -0
- infos.txt +12 -0
- model.py +8 -0
- requirements.txt +7 -0
- sentence.py +115 -0
- style.css +128 -0
- words.py +32 -0
.Rhistory
ADDED
File without changes
|
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
19 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: CLIPictionary!
|
3 |
+
emoji: ✏️
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: yellow
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.0.12
|
8 |
+
app_file: app.py
|
9 |
+
pinned: true
|
10 |
+
duplicated_from: YoannLemesle/CLIPictionary
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
__pycache__/game.cpython-39.pyc
ADDED
Binary file (4.19 kB). View file
|
|
__pycache__/model.cpython-39.pyc
ADDED
Binary file (406 Bytes). View file
|
|
__pycache__/process.cpython-39.pyc
ADDED
Binary file (3.59 kB). View file
|
|
__pycache__/sentence.cpython-39.pyc
ADDED
Binary file (3.6 kB). View file
|
|
__pycache__/words.cpython-39.pyc
ADDED
Binary file (1.46 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
import torch, torchvision, clip, random
|
3 |
+
import random, math, time, os
|
4 |
+
from PIL import Image
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
from sentence import *
|
9 |
+
from game import *
|
10 |
+
|
11 |
+
##### Initialize new game
|
12 |
+
title, _,_,var_dict = new_game(None, None, first_game=True)
|
13 |
+
var_dict["start_time"] = -1
|
14 |
+
|
15 |
+
##### Display & Events
|
16 |
+
demo = gr.Blocks()
|
17 |
+
with demo:
|
18 |
+
### All game variables are stored here
|
19 |
+
variables = gr.Variable(var_dict)
|
20 |
+
### Target Sentence
|
21 |
+
title = gr.HTML(title)
|
22 |
+
### Canvas & Prediction
|
23 |
+
with gr.Column():
|
24 |
+
with gr.Row():
|
25 |
+
image_input = gr.Image(image_mode='L', label="", show_label=False, source='canvas', shape=None, streaming=False, invert_colors=False, tool="editor")
|
26 |
+
with gr.Column():
|
27 |
+
html_pred = gr.HTML(value=getHTML(var_dict,""))
|
28 |
+
html_loading = gr.HTML("")
|
29 |
+
### 'New Sentence' Button
|
30 |
+
with gr.Row():
|
31 |
+
button_new = gr.Button("New Sentence",variant="primary")
|
32 |
+
button_mode = gr.Button("Switch Difficulty")
|
33 |
+
block = gr.HTML("<div style=\"width:50vw;\"> </div>")
|
34 |
+
### Informations
|
35 |
+
gr.HTML("<div style=\"display:block; height:30px;\"> </div>")
|
36 |
+
with gr.Row():
|
37 |
+
gr.HTML("<div style=\"display:block; position:relative; bottom:10%; border-top: 1px solid grey; padding:10px; \"><span style=\"font-size:30px;\">✏️</span><span style=\"font-size:40px; font-weight:bold;\">CLIPictionary!</span><br>Draw to make the model guess the target sentence displayed at the top!<br>Made by <a href=\"https://yoann-lemesle.notion.site/Yoann-Lemesle-63b8120764284794b275d2967be710da\" style=\"text-decoration: underline;\">Yoann Lemesle</a> using OpenAI's <a href=\"https://github.com/openai/CLIP\" style=\"text-decoration: underline;\">CLIP model</a>.</div>")
|
38 |
+
|
39 |
+
|
40 |
+
### Events
|
41 |
+
button_mode.click(switch_difficulty,inputs=[variables,html_loading],outputs=[variables,title,html_pred,html_loading])
|
42 |
+
button_new.click(loading,inputs=html_loading,outputs=[title,html_pred,html_loading]) # Button -> triggers Loading
|
43 |
+
html_loading.change(new_game,inputs=[variables,html_loading],outputs=[title,html_pred,image_input,variables]) # Loading -> triggers New game
|
44 |
+
image_input.change(process_img, inputs=[variables,image_input,title], outputs=[html_pred,title,variables])
|
45 |
+
|
46 |
+
|
47 |
+
demo.launch(share=False)
|
game.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch, torchvision, clip, time, math
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
from model import encoder_image
|
4 |
+
from sentence import *
|
5 |
+
|
6 |
+
##### Get infos & cool facts to display during loadings
|
7 |
+
with open("infos.txt") as file:
|
8 |
+
infos = file.readlines()
|
9 |
+
|
10 |
+
##### Get css
|
11 |
+
with open("style.css") as style:
|
12 |
+
css = "<style>"+ ''.join(style.readlines())+"</style>"
|
13 |
+
|
14 |
+
##### 'DIFFICULTY SWITCH' EVENT
|
15 |
+
def switch_difficulty(var_dict, html_loading):
|
16 |
+
|
17 |
+
var_dict["difficulty"] = 1 - var_dict["difficulty"]
|
18 |
+
|
19 |
+
title, infos, new_value = loading(html_loading)
|
20 |
+
return var_dict, title, infos, new_value
|
21 |
+
|
22 |
+
##### 'LOADING' EVENT
|
23 |
+
def loading(html_loading=None):
|
24 |
+
### This is just to make sure the content changes, which triggers the .change event which, itself, will launch a new game
|
25 |
+
if html_loading == "<div style=\"display:none;\">0</div>": new_value = "<div style=\"display:none;\">1</div>"
|
26 |
+
else: new_value = "<div style=\"display:none;\">0</div>"
|
27 |
+
### Get a random tip
|
28 |
+
info = np.random.choice(infos)
|
29 |
+
### Return TITLE, TIP TEXT, NEW HTML CONTENT, CANVAS IMG
|
30 |
+
return "<h1 id=\"loading\">⌛Loading...</h1>",css+"<div id=\"prediction\"><p id=\"infos\">"+info+"</p></div>",new_value
|
31 |
+
|
32 |
+
##### 'NEW GAME' EVENT
|
33 |
+
def new_game(var_dict,img=None,first_game=False):
|
34 |
+
print("\n----------Launching new game!")
|
35 |
+
|
36 |
+
if None is not var_dict: difficulty = var_dict["difficulty"]
|
37 |
+
else: difficulty = 1
|
38 |
+
|
39 |
+
var_dict = {
|
40 |
+
"start_time": time.time(),
|
41 |
+
"total_time": 0,
|
42 |
+
"found_words": [],
|
43 |
+
"target_sentence": "",
|
44 |
+
"guessed_sentence": "",
|
45 |
+
"parts": [],
|
46 |
+
"win": 0,
|
47 |
+
"step": 0,
|
48 |
+
"prev_steps": [],
|
49 |
+
"prev_norm": float("inf"),
|
50 |
+
"tip": "",
|
51 |
+
"loading": False,
|
52 |
+
"revertedState": False,
|
53 |
+
"difficulty": difficulty
|
54 |
+
}
|
55 |
+
target = iniSentence(var_dict,first_game=first_game)
|
56 |
+
### Return TITLE, PREDICTION TEXT, CANVAS IMG, VAR DICT
|
57 |
+
return "<h1>"+target+"</h1>", getHTML(var_dict,""), None, var_dict
|
58 |
+
|
59 |
+
##### PREDICTION TEXT HTML
|
60 |
+
def getHTML(var_dict,text,win=0):
|
61 |
+
### Which parts of the sentence have been guessed?
|
62 |
+
guessed, not_guessed = "", ""
|
63 |
+
text_words = text.split(" ")
|
64 |
+
target_words = var_dict["target_sentence"].split(" ")
|
65 |
+
for i,word in enumerate(text_words):
|
66 |
+
if i < len(target_words) and word == target_words[i]: guessed += word + " "
|
67 |
+
else: not_guessed += word + " "
|
68 |
+
### Display prediction
|
69 |
+
if win!=1:
|
70 |
+
html = "<p><span>"+guessed+"</span>"+not_guessed+"</p>"
|
71 |
+
else:
|
72 |
+
minutes, seconds = math.floor(var_dict["total_time"]/60), var_dict["total_time"]%60
|
73 |
+
if minutes < 1 and seconds <= 30: emoji = "🏆😍"
|
74 |
+
elif minutes < 1: emoji = "😄"
|
75 |
+
elif minutes < 2: emoji = "😐"
|
76 |
+
elif minutes < 3: emoji = "😓"
|
77 |
+
else: emoji = "😱"
|
78 |
+
time_str = "Total time: "+ ((str(minutes)+"m") if minutes>0 else "") + str(seconds)+"s "+emoji
|
79 |
+
html = "<p id=\"win\"><span>"+guessed+"</span><br>"+time_str+"</p>"
|
80 |
+
return css+"<div id=\"prediction\">"+html+"</div>"
|
81 |
+
|
82 |
+
##### DRAWING PROCESSING & GAME STATE UPDATE
|
83 |
+
def process_img(var_dict,img,title):
|
84 |
+
# Makes sure that start_time is updates for the first game
|
85 |
+
if var_dict["start_time"] == -1:
|
86 |
+
var_dict["start_time"] = time.time()
|
87 |
+
if (None is img):
|
88 |
+
return getHTML(var_dict,"",win=0),"<h1>"+var_dict["target_sentence"]+"</h1>",var_dict
|
89 |
+
elif (None is not img) and (var_dict["win"] != 1):
|
90 |
+
print("-----Processing...")
|
91 |
+
part = var_dict["parts"][var_dict["step"]]
|
92 |
+
image = torch.tensor(img).float() / 255
|
93 |
+
|
94 |
+
### Detect Cancel event
|
95 |
+
norm = torch.norm(image)
|
96 |
+
if norm > var_dict["prev_norm"]:
|
97 |
+
print("---Cancel Event")
|
98 |
+
prevState(var_dict)
|
99 |
+
var_dict["prev_norm"] = norm
|
100 |
+
|
101 |
+
### Image preprocessing --> shape (224,224)
|
102 |
+
max_edge = max(image.shape[0],image.shape[1])
|
103 |
+
min_edge = min(image.shape[0],image.shape[1])
|
104 |
+
square_image = torch.ones(max_edge,max_edge)
|
105 |
+
pad = math.floor((max_edge - min_edge)/2)
|
106 |
+
if max_edge == image.shape[1]: square_image[pad:pad+min_edge,:] = image
|
107 |
+
else: square_image[:,pad:pad+min_edge] = image
|
108 |
+
image = torchvision.transforms.Resize((224,224))(square_image.unsqueeze(0)).repeat(1,3,1,1)
|
109 |
+
|
110 |
+
### Computing cosine similarities (drawing<->text embeddings)
|
111 |
+
with torch.no_grad():
|
112 |
+
image_features = encoder_image(image)[0]
|
113 |
+
text_features = torch.tensor(part["embeddings"])
|
114 |
+
image_features /= image_features.norm()
|
115 |
+
similarities = torch.matmul(text_features,image_features)
|
116 |
+
probs = torch.nn.Softmax(dim=-1)(similarities)
|
117 |
+
|
118 |
+
### Sort indexes by similarity
|
119 |
+
idxs = np.argsort(similarities)
|
120 |
+
|
121 |
+
### Use top-3 preditions
|
122 |
+
top3_idxs = idxs[-3:]
|
123 |
+
classes = part["classes"]
|
124 |
+
preds = [classes[idx] for idx in top3_idxs]
|
125 |
+
print(f"Top-3 Predictions: {preds}")
|
126 |
+
print(f"Top-3 Probabilities: {probs[top3_idxs]}")
|
127 |
+
|
128 |
+
### Check if win (-1: bad guess, 0:progress=guessed sentence part, 1:win=guessed whole sentence)
|
129 |
+
win = updateState(var_dict, preds)
|
130 |
+
if win == -1:
|
131 |
+
text = preds[-1]
|
132 |
+
elif win == 0:
|
133 |
+
part = var_dict["parts"][var_dict["step"]]
|
134 |
+
text = var_dict["guessed_sentence"] + link_text(part,"something") + " something"
|
135 |
+
elif win == 1:
|
136 |
+
text = var_dict["guessed_sentence"]
|
137 |
+
if var_dict["total_time"] == 0: var_dict["total_time"] = round(time.time() - var_dict["start_time"])
|
138 |
+
return getHTML(var_dict,text,var_dict["win"]),"<h1>"+var_dict["target_sentence"]+"</h1>",var_dict
|
139 |
+
else:
|
140 |
+
return getHTML(var_dict,var_dict["target_sentence"],win=1),"<h1>"+var_dict["target_sentence"]+"</h1>",var_dict
|
infos.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Tip: Filling shapes can help!
|
2 |
+
Tip: Drawing context elements can help!
|
3 |
+
Tip: Big drawings are more likely to work!
|
4 |
+
Tip: Adding a face to objects doing actions helps!
|
5 |
+
Tip: Add a musical note to help CLIP guess instruments!
|
6 |
+
Tip: Add a fork to help CLIP guess food!
|
7 |
+
Did you know? CLIP has multimodal neurons!
|
8 |
+
Did you know? The paper introducing CLIP has been published in 2021.
|
9 |
+
Did you know? CLIP stands for 'Contrastive Language-Image Pretraining'.
|
10 |
+
Did you know? DALL·E 2 can generate images from text using CLIP's embeddings!
|
11 |
+
Did you know? Typographic attacks (adding text to images) can change CLIP's predictions!
|
12 |
+
Did you know? CLIP has been trained on 400 millions (image,text) pairs!
|
model.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##### Initializes CLIP (from https://github.com/openai/CLIP)
|
2 |
+
import torch, torchvision, clip
|
3 |
+
|
4 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
5 |
+
model, preprocess = clip.load("ViT-B/32", device=device)
|
6 |
+
|
7 |
+
encoder_image = model.encode_image
|
8 |
+
encoder_text = model.encode_text
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
scipy
|
2 |
+
numpy
|
3 |
+
torch
|
4 |
+
ftfy
|
5 |
+
regex
|
6 |
+
tqdm
|
7 |
+
git+https://github.com/openai/CLIP.git
|
sentence.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from model import encoder_text
|
2 |
+
import torch, clip, random
|
3 |
+
import numpy as np
|
4 |
+
device = torch.device("cpu")
|
5 |
+
|
6 |
+
from words import words
|
7 |
+
|
8 |
+
########## SENTENCE PART #######################################################
|
9 |
+
voyelles = ["a","e","i","o","u"]
|
10 |
+
links = list(words.keys())[1:]
|
11 |
+
|
12 |
+
def link_text(part,nextWord):
|
13 |
+
### Check if we need to write "... a", "... an", "..."
|
14 |
+
if (len(part["link"]) > 0) and (part["link"][-1] == "a"):
|
15 |
+
voyelleStart = (nextWord[0] in voyelles)
|
16 |
+
plural = (nextWord[-1] == "s" and nextWord[-2] != "s") or (nextWord in ["nothing","hair","vampire teeth","something"])
|
17 |
+
else:
|
18 |
+
voyelleStart, plural = False, False
|
19 |
+
return (part["link"][:-2] if plural else part["link"] + ("n" if voyelleStart else ""))
|
20 |
+
|
21 |
+
def part_text(part):
|
22 |
+
l = link_text(part,part["word"])
|
23 |
+
return l + (" " if len(l)>0 else "") + part["word"]
|
24 |
+
|
25 |
+
def compute_embeddings(part,var_dict,prefix,batch_size=64):
|
26 |
+
target = part["word"]
|
27 |
+
possibleWords = list(set(words[part["link"]]) - set([target]+var_dict["found_words"]))
|
28 |
+
if len(possibleWords) > (batch_size-1): possibleWords = np.random.choice(list(possibleWords),batch_size-1,replace=False).tolist()
|
29 |
+
possibleWords.append(target)
|
30 |
+
### Compute all classes & embeddings for current sentence part
|
31 |
+
part["classes"] = [prefix + link_text(part,w) + (" " if len(link_text(part,w))>0 else "") + w for w in possibleWords]
|
32 |
+
with torch.no_grad():
|
33 |
+
embeddings = encoder_text(clip.tokenize(part["classes"]).to(device))
|
34 |
+
embeddings /= embeddings.norm(dim=-1, keepdim=True)
|
35 |
+
part["embeddings"] = embeddings.tolist()
|
36 |
+
|
37 |
+
########## SENTENCE ############################################################
|
38 |
+
def iniSentence(var_dict,input="",first_game=False):
|
39 |
+
var_dict["found_words"] = []
|
40 |
+
var_dict["parts"] = []
|
41 |
+
var_dict["step"] = 0
|
42 |
+
prefix = ""
|
43 |
+
N = (2 if var_dict["difficulty"] == 1 else 1)
|
44 |
+
|
45 |
+
if first_game:
|
46 |
+
link = "a drawing of a"
|
47 |
+
part = {"link":link,"word":"cat","classes":[],"embeddings":[]}
|
48 |
+
var_dict["parts"].append(part)
|
49 |
+
compute_embeddings(part, var_dict, prefix)
|
50 |
+
prefix += part_text(part) + " "
|
51 |
+
|
52 |
+
link = "with a"
|
53 |
+
part = {"link":link,"word":"face","classes":[],"embeddings":[]}
|
54 |
+
var_dict["parts"].append(part)
|
55 |
+
compute_embeddings(part, var_dict, prefix)
|
56 |
+
prefix += part_text(part) + " "
|
57 |
+
else:
|
58 |
+
##### Generating Random Sentence
|
59 |
+
link = "a drawing of a"
|
60 |
+
part = {"link":link,"word":np.random.choice(words[link]),"classes":[],"embeddings":[]}
|
61 |
+
var_dict["parts"].append(part)
|
62 |
+
compute_embeddings(part, var_dict, prefix)
|
63 |
+
prefix += part_text(part) + " "
|
64 |
+
|
65 |
+
for i in range(N-1):
|
66 |
+
link = np.random.choice(links)
|
67 |
+
part = {"link":link,"word":np.random.choice(words[link][1:]),"classes":[],"embeddings":[]}
|
68 |
+
var_dict["parts"].append(part)
|
69 |
+
compute_embeddings(part, var_dict, prefix)
|
70 |
+
prefix += part_text(part) + " "
|
71 |
+
|
72 |
+
var_dict["target_sentence"] = prefix[:-1] # Target sentence is prefix without the last space
|
73 |
+
setState(var_dict)
|
74 |
+
return var_dict["target_sentence"]
|
75 |
+
|
76 |
+
def prevState(var_dict):
|
77 |
+
if len(var_dict["prev_steps"]) > 0: var_dict["step"] = var_dict["prev_steps"].pop(-1)
|
78 |
+
else: var_dict["step"] = 0
|
79 |
+
var_dict["revertedState"] = True
|
80 |
+
setState(var_dict)
|
81 |
+
|
82 |
+
def setState(var_dict):
|
83 |
+
var_dict["found_words"] = var_dict["found_words"][:var_dict["step"]]
|
84 |
+
var_dict["guessed_sentence"] = ""
|
85 |
+
for i in range(var_dict["step"]):
|
86 |
+
var_dict["guessed_sentence"] += part_text(var_dict["parts"][i]) + " "
|
87 |
+
|
88 |
+
def updateState(var_dict, preds):
|
89 |
+
if not var_dict["revertedState"]: var_dict["prev_steps"].append(var_dict["step"])
|
90 |
+
else: var_dict["revertedState"] = False
|
91 |
+
|
92 |
+
### Check if the current part has been guessed
|
93 |
+
part = var_dict["parts"][var_dict["step"]]
|
94 |
+
|
95 |
+
|
96 |
+
idx_of_nothing = -1
|
97 |
+
if ("nothing" in preds[0]): idx_of_nothing = 0
|
98 |
+
elif ("nothing" in preds[1]): idx_of_nothing = 1
|
99 |
+
elif ("nothing" in preds[2]): idx_of_nothing = 2
|
100 |
+
|
101 |
+
idx_of_guess = -1
|
102 |
+
if (part["classes"][-1] == preds[0]): idx_of_guess = 0
|
103 |
+
elif (part["classes"][-1] == preds[1]): idx_of_guess = 1
|
104 |
+
elif (part["classes"][-1] == preds[2]): idx_of_guess = 2
|
105 |
+
|
106 |
+
|
107 |
+
if not var_dict["win"] and (idx_of_guess > idx_of_nothing):
|
108 |
+
var_dict["step"] += 1
|
109 |
+
var_dict["found_words"].append(part["word"])
|
110 |
+
var_dict["win"] = var_dict["step"] == len(var_dict["parts"])
|
111 |
+
setState(var_dict)
|
112 |
+
if var_dict["win"]: return 1
|
113 |
+
else: return 0
|
114 |
+
elif not var_dict["win"]: return -1
|
115 |
+
else: return 1
|
style.css
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
@-webkit-keyframes winAnim {
|
3 |
+
from { text-shadow:0px 0px 15px rgb(250,150,0,0); font-size:25px;}
|
4 |
+
to { text-shadow:0px 0px 15px rgb(250,150,0,0.75); font-size:30px;}
|
5 |
+
}
|
6 |
+
|
7 |
+
@keyframes winAnim {
|
8 |
+
from { text-shadow:0px 0px 15px rgb(250,150,0,0); font-size:25px;}
|
9 |
+
to { text-shadow:0px 0px 15px rgb(250,150,0,0.75); font-size:30px;}
|
10 |
+
}
|
11 |
+
|
12 |
+
|
13 |
+
#test{
|
14 |
+
font-weight:bold;
|
15 |
+
}
|
16 |
+
|
17 |
+
@-webkit-keyframes prediction {
|
18 |
+
from { opacity:0;}
|
19 |
+
to { opacity:1;}
|
20 |
+
}
|
21 |
+
|
22 |
+
@keyframes prediction {
|
23 |
+
from { opacity:0;}
|
24 |
+
to { opacity:1;}
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
div#prediction{
|
29 |
+
display:block;
|
30 |
+
width:45vw;
|
31 |
+
height:100%;
|
32 |
+
text-align:center;
|
33 |
+
margin-top:100px;
|
34 |
+
margin-left:auto;
|
35 |
+
margin-right: auto;
|
36 |
+
}
|
37 |
+
|
38 |
+
div#prediction p:not(#win){
|
39 |
+
font-size:25px;
|
40 |
+
display:inline-block;
|
41 |
+
margin:auto;
|
42 |
+
position:relative;
|
43 |
+
top:48%;
|
44 |
+
position-anchor: 50% 50%;
|
45 |
+
text-align:center;
|
46 |
+
transform: translate(0, -50%);
|
47 |
+
-webkit-animation: prediction 0.25s;
|
48 |
+
animation: prediction 0.25s;
|
49 |
+
}
|
50 |
+
|
51 |
+
div#prediction p#win{
|
52 |
+
font-weight:bold;
|
53 |
+
-webkit-animation: winAnim 0.5s;
|
54 |
+
animation: winAnim 0.5s;
|
55 |
+
font-size:30px;
|
56 |
+
text-shadow:0px 0px 15px rgb(250,150,0,0.75);
|
57 |
+
}
|
58 |
+
|
59 |
+
div#prediction p#infos{
|
60 |
+
font-weight:bold;
|
61 |
+
-webkit-animation: winAnim 0.5s;
|
62 |
+
animation: winAnim 0.5s;
|
63 |
+
font-size:30px;
|
64 |
+
text-shadow:0px 0px 15px rgb(250,150,0,0.75);
|
65 |
+
}
|
66 |
+
|
67 |
+
|
68 |
+
span{
|
69 |
+
font-weight:bold;
|
70 |
+
color:rgb(250,150,0);
|
71 |
+
}
|
72 |
+
|
73 |
+
h1{
|
74 |
+
display:block; font-size:30px; font-weight:bold; width:100%; text-align:center; margin-bottom:15px;
|
75 |
+
}
|
76 |
+
|
77 |
+
|
78 |
+
@-webkit-keyframes loading {
|
79 |
+
from { color:rgb(250,150,0,0.25);}
|
80 |
+
to { color:rgb(250,150,0,1);}
|
81 |
+
}
|
82 |
+
|
83 |
+
@keyframes loading {
|
84 |
+
from { color:rgb(250,150,0,0.25);}
|
85 |
+
to { color:rgb(250,150,0,1);}
|
86 |
+
}
|
87 |
+
|
88 |
+
|
89 |
+
h1#loading{
|
90 |
+
margin-bottom:15px;
|
91 |
+
display:block;
|
92 |
+
width:100%;
|
93 |
+
vertical-align: center;
|
94 |
+
text-align: center;
|
95 |
+
|
96 |
+
font-size:30px;
|
97 |
+
font-weight:bold;
|
98 |
+
|
99 |
+
-webkit-animation: loading 10s;
|
100 |
+
animation: loading 10s;
|
101 |
+
color:rgb(250,150,0,1);
|
102 |
+
}
|
103 |
+
|
104 |
+
@-webkit-keyframes processing {
|
105 |
+
from { opacity:1;}
|
106 |
+
to { opacity:0;}
|
107 |
+
}
|
108 |
+
|
109 |
+
@keyframes processing {
|
110 |
+
from { opacity:1;}
|
111 |
+
to { opacity:0;}
|
112 |
+
}
|
113 |
+
|
114 |
+
|
115 |
+
p#processing{
|
116 |
+
|
117 |
+
-webkit-animation: loading 3s;
|
118 |
+
animation: loading 3s;
|
119 |
+
color:rgb(250,150,0);
|
120 |
+
font-weight:bold;
|
121 |
+
|
122 |
+
font-size:50px;
|
123 |
+
display:block;
|
124 |
+
margin:auto;
|
125 |
+
text-align:center;
|
126 |
+
width:100%;
|
127 |
+
|
128 |
+
}
|
words.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
################################################################################
|
2 |
+
# A DRAWING OF A ...
|
3 |
+
shapes = ["triangle","square","circle","heart","star","diamond"]
|
4 |
+
animals = ["cat","dog","duck","bee","butterfly","bird","pig","cow","fish","frog","shark","snake","mouse","monkey","snail"]
|
5 |
+
objects = ["bottle","wine glass","plane","spoon","basket ball","chair","pen","computer","hat","soccer ball","phone","sword","axe","umbrella","bell","dumbbell","scissors","fork","bag","clock","key","shopping cart","car","boat","house","mug","sun","moon","atom","hand"]
|
6 |
+
plants = ["tree","flower","leaf","palm tree","mushroom"] # I know that mushrooms are not plants stop coming to my house
|
7 |
+
food = ["donut","coconut","banana","apple","sausage","icecream","burger","egg","pizza"]
|
8 |
+
instruments = ["drum","guitar","piano","flute","trumpet","accordion"]
|
9 |
+
|
10 |
+
# FEELING ...
|
11 |
+
feelings = ["neutral","happy","sad","angry","surprised","thirsty","sleepy","hungry","love","curious","evil"]
|
12 |
+
|
13 |
+
# WITH A...
|
14 |
+
attributes = ["face","mustache","muscles","vampire teeth","hair","eye","mouth","scar"]
|
15 |
+
|
16 |
+
# WEARING A...
|
17 |
+
clothings = ["glasses","sunglasses","hat","socks","eye patch","pants","tee-shirt","scarf"]
|
18 |
+
|
19 |
+
# ...
|
20 |
+
others = ["that is talking","that is dancing","that is singing","and its clone","at the beach","at a forest"]
|
21 |
+
|
22 |
+
words = {
|
23 |
+
"a drawing of a": shapes + animals + objects + instruments + plants + food,
|
24 |
+
"with a": ["nothing"]+attributes + clothings,
|
25 |
+
"wearing a": ["nothing"]+clothings,
|
26 |
+
"eating a": ["nothing"]+food,
|
27 |
+
"playing the": ["nothing"]+instruments,
|
28 |
+
"holding a": ["nothing"]+shapes + animals + objects + instruments + plants + food,
|
29 |
+
"feeling": ["nothing"]+feelings,
|
30 |
+
"": ["and nothing else"]+others
|
31 |
+
}
|
32 |
+
################################################################################
|