# Copyright (c) Facebook, Inc. and its affiliates. # pyre-unsafe from typing import List import torch from detectron2.config import CfgNode from detectron2.structures import Instances from detectron2.structures.boxes import matched_pairwise_iou class DensePoseDataFilter: def __init__(self, cfg: CfgNode): self.iou_threshold = cfg.MODEL.ROI_DENSEPOSE_HEAD.FG_IOU_THRESHOLD self.keep_masks = cfg.MODEL.ROI_DENSEPOSE_HEAD.COARSE_SEGM_TRAINED_BY_MASKS @torch.no_grad() def __call__(self, features: List[torch.Tensor], proposals_with_targets: List[Instances]): """ Filters proposals with targets to keep only the ones relevant for DensePose training Args: features (list[Tensor]): input data as a list of features, each feature is a tensor. Axis 0 represents the number of images `N` in the input data; axes 1-3 are channels, height, and width, which may vary between features (e.g., if a feature pyramid is used). proposals_with_targets (list[Instances]): length `N` list of `Instances`. The i-th `Instances` contains instances (proposals, GT) for the i-th input image, Returns: list[Tensor]: filtered features list[Instances]: filtered proposals """ proposals_filtered = [] # TODO: the commented out code was supposed to correctly deal with situations # where no valid DensePose GT is available for certain images. The corresponding # image features were sliced and proposals were filtered. This led to performance # deterioration, both in terms of runtime and in terms of evaluation results. # # feature_mask = torch.ones( # len(proposals_with_targets), # dtype=torch.bool, # device=features[0].device if len(features) > 0 else torch.device("cpu"), # ) for i, proposals_per_image in enumerate(proposals_with_targets): if not proposals_per_image.has("gt_densepose") and ( not proposals_per_image.has("gt_masks") or not self.keep_masks ): # feature_mask[i] = 0 continue gt_boxes = proposals_per_image.gt_boxes est_boxes = proposals_per_image.proposal_boxes # apply match threshold for densepose head iou = matched_pairwise_iou(gt_boxes, est_boxes) iou_select = iou > self.iou_threshold proposals_per_image = proposals_per_image[iou_select] # pyre-ignore[6] N_gt_boxes = len(proposals_per_image.gt_boxes) assert N_gt_boxes == len(proposals_per_image.proposal_boxes), ( f"The number of GT boxes {N_gt_boxes} is different from the " f"number of proposal boxes {len(proposals_per_image.proposal_boxes)}" ) # filter out any target without suitable annotation if self.keep_masks: gt_masks = ( proposals_per_image.gt_masks if hasattr(proposals_per_image, "gt_masks") else [None] * N_gt_boxes ) else: gt_masks = [None] * N_gt_boxes gt_densepose = ( proposals_per_image.gt_densepose if hasattr(proposals_per_image, "gt_densepose") else [None] * N_gt_boxes ) assert len(gt_masks) == N_gt_boxes assert len(gt_densepose) == N_gt_boxes selected_indices = [ i for i, (dp_target, mask_target) in enumerate(zip(gt_densepose, gt_masks)) if (dp_target is not None) or (mask_target is not None) ] # if not len(selected_indices): # feature_mask[i] = 0 # continue if len(selected_indices) != N_gt_boxes: proposals_per_image = proposals_per_image[selected_indices] # pyre-ignore[6] assert len(proposals_per_image.gt_boxes) == len(proposals_per_image.proposal_boxes) proposals_filtered.append(proposals_per_image) # features_filtered = [feature[feature_mask] for feature in features] # return features_filtered, proposals_filtered return features, proposals_filtered