Spaces:
Running
Running
#From | |
import torch | |
import re | |
import gradio as gr | |
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel | |
device='cpu' | |
encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
model_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint) | |
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint) | |
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device) | |
def predict(image,max_length=64, num_beams=4): | |
image = image.convert('RGB') | |
image = feature_extractor(image, return_tensors="pt").pixel_values.to(device) | |
clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0] | |
caption_ids = model.generate(image, max_length = max_length)[0] | |
caption_text = clean_text(tokenizer.decode(caption_ids)) | |
return caption_text | |
input = gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True) | |
output = gr.outputs.Textbox(type="auto",label="Captions") | |
examples = [f"example{i}.jpg" for i in range(1,7)] | |
description= "Image captioning application made using transformers" | |
title = "Image Captioning 🖼️" | |
article = "Created By : Shreyas Dixit " | |
interface = gr.Interface( | |
fn=predict, | |
inputs = input, | |
theme="grass", | |
outputs=output, | |
examples = examples, | |
title=title, | |
description=description, | |
article = article, | |
) | |
interface.launch(debug=True) |