Image-Caption / app2.py
johngoad's picture
Upload app2.py with huggingface_hub
ed1a677
raw
history blame
1.64 kB
import torch
import gradio as gr
import re
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
device='cpu'
encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
model_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)
def predict(image,max_length=64, num_beams=4):
image = image.convert('RGB')
image = feature_extractor(image, return_tensors="pt").pixel_values.to(device)
clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0]
caption_ids = model.generate(image, max_length = max_length)[0]
caption_text = clean_text(tokenizer.decode(caption_ids))
return caption_text
def set_example_image(example: list) -> dict:
return gr.Image.update(value=example[0])
css = '''
h1#title {
text-align: center;
}
h3#header {
text-align: center;
}
img#overview {
max-width: 800px;
max-height: 600px;
}
img#style-image {
max-width: 1000px;
max-height: 600px;
}
'''
demo = gr.Blocks(css=css)
with demo:
gr.Markdown('''<h1 id="title">Image Caption 🖼️</h1>''')
gr.Markdown('''Made by : Shreyas Dixit''')
with gr.Column():
input = gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True)
output = gr.outputs.Textbox(type="auto",label="Captions")
btn = gr.Button("Genrate Caption")
btn.click(fn=predict, inputs=input, outputs=output)
demo.launch()