File size: 4,301 Bytes
bd8ed45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from uuid import uuid4
import gradio as gr
from laia.scripts.htr.decode_ctc import run as decode
from laia.common.arguments import CommonArgs, DataArgs, TrainerArgs, DecodeArgs
import sys
from tempfile import NamedTemporaryFile, mkdtemp
from pathlib import Path
from contextlib import redirect_stdout
import re
from huggingface_hub import snapshot_download
from bidi.algorithm import get_display

images = Path(mkdtemp())

IMAGE_ID_PATTERN = r"(?P<image_id>[-a-z0-9]{36})"
CONFIDENCE_PATTERN = r"(?P<confidence>[0-9.]+)"  # For line
TEXT_PATTERN = r"\s*(?P<text>.*)\s*"
LINE_PREDICTION = re.compile(rf"{IMAGE_ID_PATTERN} {CONFIDENCE_PATTERN} {TEXT_PATTERN}")
models_name = ["johnlockejrr/pylaia-samaritan_v1"]
MODELS = {}
DEFAULT_HEIGHT = 128


def get_width(image, height=DEFAULT_HEIGHT):
    aspect_ratio = image.width / image.height
    return height * aspect_ratio


def load_model(model_name):
    if model_name not in MODELS:
        MODELS[model_name] = Path(snapshot_download(model_name))
    return MODELS[model_name]


def predict(model_name, input_img):
    model_dir = load_model(model_name)

    temperature = 2.0
    batch_size = 1

    weights_path = model_dir / "weights.ckpt"
    syms_path = model_dir / "syms.txt"
    language_model_params = {"language_model_weight": 1.0}
    use_language_model = (model_dir / "tokens.txt").exists()
    if use_language_model:
        language_model_params.update(
            {
                "language_model_path": str(model_dir / "language_model.arpa.gz"),
                "lexicon_path": str(model_dir / "lexicon.txt"),
                "tokens_path": str(model_dir / "tokens.txt"),
            }
        )

    common_args = CommonArgs(
        checkpoint=str(weights_path.relative_to(model_dir)),
        train_path=str(model_dir),
        experiment_dirname="",
    )
    data_args = DataArgs(batch_size=batch_size, color_mode="L")
    trainer_args = TrainerArgs(
        # Disable progress bar else it messes with frontend display
        progress_bar_refresh_rate=0
    )
    decode_args = DecodeArgs(
        include_img_ids=True,
        join_string="",
        convert_spaces=True,
        print_line_confidence_scores=True,
        print_word_confidence_scores=False,
        temperature=temperature,
        use_language_model=use_language_model,
        **language_model_params,
    )

    with NamedTemporaryFile() as pred_stdout, NamedTemporaryFile() as img_list:
        image_id = uuid4()
        # Resize image to 128 if bigger/smaller
        input_img = input_img.resize((int(get_width(input_img)), DEFAULT_HEIGHT))
        input_img.save(str(images / f"{image_id}.jpg"))
        # Export image list
        Path(img_list.name).write_text("\n".join([str(image_id)]))

        # Capture stdout as that's where PyLaia outputs predictions
        with redirect_stdout(open(pred_stdout.name, mode="w")):
            decode(
                syms=str(syms_path),
                img_list=img_list.name,
                img_dirs=[str(images)],
                common=common_args,
                data=data_args,
                trainer=trainer_args,
                decode=decode_args,
                num_workers=1,
            )
            # Flush stdout to avoid output buffering
            sys.stdout.flush()
        predictions = Path(pred_stdout.name).read_text().strip().splitlines()
    assert len(predictions) == 1
    _, score, text = LINE_PREDICTION.match(predictions[0]).groups()
    return input_img, {"text": get_display(u'%s' % text, base_dir='R'), "score": score}


gradio_app = gr.Interface(
    predict,
    inputs=[
        gr.Dropdown(models_name, value=models_name[0], label="Models"),
        gr.Image(
            label="Upload an image of a line",
            sources=["upload", "clipboard"],
            type="pil",
            height=DEFAULT_HEIGHT,
            width=2000,
            image_mode="L",
        ),
    ],
    outputs=[
        gr.Image(label="Processed Image"),
        gr.JSON(label="Decoded text"),
    ],
    examples=[
        ["johnlockejrr/pylaia-samaritan_v1", str(filename)]
        for filename in Path("examples").iterdir()
    ],
    title="Decode the transcription of an image using a PyLaia model",
    cache_examples=True,
)

if __name__ == "__main__":
    gradio_app.launch()