anspro1 / app.py
johnmuchiri's picture
Update app.py
ad29e3b
import streamlit as st
import os
from langchain.chains import RetrievalQA
from langchain.vectorstores import Chroma, Pinecone
from langchain.llms import OpenAI
from langchain.document_loaders import TextLoader
from langchain.document_loaders import PyPDFLoader
from langchain.indexes import VectorstoreIndexCreator
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.document_loaders import UnstructuredPDFLoader, OnlinePDFLoader
import pinecone
# Set the path where you want to save the uploaded PDF file
SAVE_DIR = "pdf"
st.header('Question Answering with your PDF file')
st.write("Are you interested in chatting with your own documents, whether it is a text file, a PDF, or a website? LangChain makes it easy for you to do question answering with your documents.")
def qa(file, query, chain_type, k,api_key_pinecode,index_name,environment_pinecode):
# load document
loader = PyPDFLoader(file)
#loader = UnstructuredPDFLoader(file)
#loader = OnlinePDFLoader("https://wolfpaulus.com/wp-content/uploads/2017/05/field-guide-to-data-science.pdf")
documents = loader.load()
#print("doccs",documents)
# split the documents into chunks
# text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
# texts = text_splitter.split_documents(documents)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
# select which embeddings we want to use
embeddings = OpenAIEmbeddings()
# create the vectorestore to use as the index
# initialize pinecone
pinecone.init(
api_key=api_key_pinecode, # find at app.pinecone.io
environment=environment_pinecode #"northamerica-northeast1-gcp" # next to api key in console
)
#index_name = "openaiindex"
index_name = index_name
#db = Chroma.from_documents(texts, embeddings)
#db = Pinecone.from_texts(texts, embeddings)
db = Pinecone.from_texts([t.page_content for t in texts], embeddings, index_name=index_name)
# expose this index in a retriever interface
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": k})
# create a chain to answer questions
qa = RetrievalQA.from_chain_type(
llm=OpenAI(), chain_type=chain_type, retriever=retriever, return_source_documents=True)
result = qa({"query": query})
print(result['result'])
return result
with st.sidebar:
st.header('Configurations')
st.write("Enter OpenAI API key. This costs $. Set up billing at [OpenAI](https://platform.openai.com/account).")
apikey = st.text_input("Enter your OpenAI API Key here")
os.environ["OPENAI_API_KEY"] = apikey
st.write("Enter Pinecode API key. [Pinecode](https://www.pinecone.io/).")
apikey2 = st.text_input("Enter your Pinecone Key here")
enviroment_pinecode = st.text_input("Enter your Pinecone your environment Key")
index_name = st.text_input("enter index-name")
left_column, right_column = st.columns(2)
# You can use a column just like st.sidebar:
with left_column:
# Add a file uploader to the app
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
# Check if a file has been uploaded
if uploaded_file is not None:
# Save the uploaded file to the specified directory
file_path = os.path.join(SAVE_DIR, uploaded_file.name)
with open(file_path, "wb") as f:
f.write(uploaded_file.getbuffer())
st.success(f"File path {file_path}")
query = st.text_input("enter your question")
chain_type = st.selectbox(
'chain type',
('stuff', 'map_reduce', "refine", "map_rerank"))
k = st.slider('Number of relevant chunks', 1, 5)
if st.button('Loading'):
# Or even better, call Streamlit functions inside a "with" block:
result=qa(file_path, query, chain_type, k, apikey2, index_name, enviroment_pinecode)
with right_column:
st.write("Output of your question")
#st.write(result)
#st.write(result['result'])
st.subheader("Result")
st.write(result['result'])
st.subheader("source_documents")
st.write(result['source_documents'][0])