Spaces:
Sleeping
Sleeping
johnmuchiri
commited on
Commit
·
1404580
1
Parent(s):
d2bc30a
Add application file
Browse files- app.py +137 -0
- requirements.txt +0 -0
app.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
from langchain.chains import RetrievalQA
|
4 |
+
from langchain.vectorstores import Chroma, Pinecone
|
5 |
+
from langchain.llms import OpenAI
|
6 |
+
from langchain.document_loaders import TextLoader
|
7 |
+
from langchain.document_loaders import PyPDFLoader
|
8 |
+
from langchain.indexes import VectorstoreIndexCreator
|
9 |
+
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
|
10 |
+
from langchain.embeddings import OpenAIEmbeddings
|
11 |
+
from langchain.vectorstores import Chroma
|
12 |
+
from langchain.document_loaders import UnstructuredPDFLoader, OnlinePDFLoader
|
13 |
+
import pinecone
|
14 |
+
|
15 |
+
# Set the path where you want to save the uploaded PDF file
|
16 |
+
SAVE_DIR = "pdfs"
|
17 |
+
|
18 |
+
|
19 |
+
st.header('Question Answering with your PDF file')
|
20 |
+
st.write("Are you interested in chatting with your own documents, whether it is a text file, a PDF, or a website? LangChain makes it easy for you to do question answering with your documents.")
|
21 |
+
def qa(file, query, chain_type, k,api_key_pinecode,index_name,environment_pinecode):
|
22 |
+
# load document
|
23 |
+
loader = PyPDFLoader(file)
|
24 |
+
#loader = UnstructuredPDFLoader(file)
|
25 |
+
#loader = OnlinePDFLoader("https://wolfpaulus.com/wp-content/uploads/2017/05/field-guide-to-data-science.pdf")
|
26 |
+
documents = loader.load()
|
27 |
+
#print("doccs",documents)
|
28 |
+
# split the documents into chunks
|
29 |
+
# text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
30 |
+
# texts = text_splitter.split_documents(documents)
|
31 |
+
|
32 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
33 |
+
texts = text_splitter.split_documents(documents)
|
34 |
+
# select which embeddings we want to use
|
35 |
+
embeddings = OpenAIEmbeddings()
|
36 |
+
# create the vectorestore to use as the index
|
37 |
+
# initialize pinecone
|
38 |
+
pinecone.init(
|
39 |
+
api_key=api_key_pinecode, #"8e9ae07c-dc96-466e-b1a1-519e2ccb4705", # find at app.pinecone.io
|
40 |
+
environment=environment_pinecode #"northamerica-northeast1-gcp" # next to api key in console
|
41 |
+
)
|
42 |
+
|
43 |
+
#index_name = "openaiindex"
|
44 |
+
index_name = index_name
|
45 |
+
#db = Chroma.from_documents(texts, embeddings)
|
46 |
+
#db = Pinecone.from_texts(texts, embeddings)
|
47 |
+
db = Pinecone.from_texts([t.page_content for t in texts], embeddings, index_name=index_name)
|
48 |
+
# expose this index in a retriever interface
|
49 |
+
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": k})
|
50 |
+
# create a chain to answer questions
|
51 |
+
qa = RetrievalQA.from_chain_type(
|
52 |
+
llm=OpenAI(), chain_type=chain_type, retriever=retriever, return_source_documents=True)
|
53 |
+
result = qa({"query": query})
|
54 |
+
print(result['result'])
|
55 |
+
return result
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
with st.sidebar:
|
66 |
+
st.header('Configurations')
|
67 |
+
st.write("Enter OpenAI API key. This costs $. Set up billing at [OpenAI](https://platform.openai.com/account).")
|
68 |
+
apikey = st.text_input("Enter your OpenAI API Key here")
|
69 |
+
os.environ["OPENAI_API_KEY"] = apikey
|
70 |
+
|
71 |
+
st.write("Enter Pinecode API key. [Pinecode](https://www.pinecone.io/).")
|
72 |
+
|
73 |
+
apikey2 = st.text_input("Enter your Pinecone Key here")
|
74 |
+
|
75 |
+
enviroment_pinecode = st.text_input("Enter your Pinecone your environment Key")
|
76 |
+
|
77 |
+
index_name = st.text_input("enter index-name")
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
left_column, right_column = st.columns(2)
|
84 |
+
# You can use a column just like st.sidebar:
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
with left_column:
|
94 |
+
|
95 |
+
# Add a file uploader to the app
|
96 |
+
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
|
97 |
+
|
98 |
+
# Check if a file has been uploaded
|
99 |
+
if uploaded_file is not None:
|
100 |
+
# Save the uploaded file to the specified directory
|
101 |
+
file_path = os.path.join(SAVE_DIR, uploaded_file.name)
|
102 |
+
# with open(file_path, "wb") as f:
|
103 |
+
# f.write(uploaded_file.getbuffer())
|
104 |
+
st.success(f"File path {file_path}")
|
105 |
+
query = st.text_input("enter your question")
|
106 |
+
chain_type = st.selectbox(
|
107 |
+
'chain type',
|
108 |
+
('stuff', 'map_reduce', "refine", "map_rerank"))
|
109 |
+
k = st.slider('Number of relevant chunks', 1, 5)
|
110 |
+
|
111 |
+
if st.button('Loading'):
|
112 |
+
# Or even better, call Streamlit functions inside a "with" block:
|
113 |
+
result=qa(file_path, query, chain_type, k, apikey2, index_name, enviroment_pinecode)
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
with right_column:
|
119 |
+
|
120 |
+
st.write("Output of your question")
|
121 |
+
|
122 |
+
#st.write(result)
|
123 |
+
|
124 |
+
#st.write(result['result'])
|
125 |
+
st.subheader("Result")
|
126 |
+
st.write(result['result'])
|
127 |
+
|
128 |
+
st.subheader("source_documents")
|
129 |
+
st.write(result['source_documents'][0])
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
|
requirements.txt
ADDED
Binary file (3.88 kB). View file
|
|