chatgpt_clone / app.py
leecjohnny
inital commit
a4e3dc2 unverified
raw
history blame
6.61 kB
import os
import datetime
from zoneinfo import ZoneInfo
from typing import Optional, Tuple, List
import asyncio
import logging
from copy import deepcopy
import json
import gradio as gr
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationChain
from langchain.memory import ConversationTokenBufferMemory
from langchain.callbacks.streaming_aiter import AsyncIteratorCallbackHandler
from langchain.schema import BaseMessage
from langchain.prompts.chat import (
ChatPromptTemplate,
MessagesPlaceholder,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
logging.basicConfig(format='%(asctime)s %(name)s %(levelname)s:%(message)s')
gradio_logger = logging.getLogger("gradio_app")
gradio_logger.setLevel(logging.INFO)
logging.getLogger("openai").setLevel(logging.DEBUG)
GPT_3_5_CONTEXT_LENGTH = 4096
def make_template():
knowledge_cutoff = "September 2021"
current_date = datetime.datetime.now(ZoneInfo("America/New_York")).strftime("%Y-%m-%d")
system_msg = f"You are ChatGPT, a large language model trained by OpenAI. Answer as concisely as possible. Knowledge cutoff: {knowledge_cutoff} Current date: {current_date}"
human_template = "{input}"
return ChatPromptTemplate.from_messages([
SystemMessagePromptTemplate.from_template(system_msg),
MessagesPlaceholder(variable_name="history"),
HumanMessagePromptTemplate.from_template(human_template)
])
def reset_textbox():
return gr.update(value="")
def auth(username, password):
return (username, password) in creds
async def respond(
inp: str,
state: Optional[Tuple[List,
ConversationTokenBufferMemory,
ConversationChain]],
request: gr.Request
):
"""Execute the chat functionality."""
def prep_messages(user_msg: str, memory_buffer: List[BaseMessage]) -> Tuple[str, List[BaseMessage]]:
messages_to_send = template.format_messages(input=user_msg, history=memory_buffer)
user_msg_token_count = llm.get_num_tokens_from_messages([messages_to_send[-1]])
total_token_count = llm.get_num_tokens_from_messages(messages_to_send)
_, encoding = llm._get_encoding_model()
while user_msg_token_count > GPT_3_5_CONTEXT_LENGTH:
gradio_logger.warning(f"Pruning user message due to user message token length of {user_msg_token_count}")
user_msg = encoding.decode(llm.get_token_ids(user_msg)[:GPT_3_5_CONTEXT_LENGTH - 100])
messages_to_send = template.format_messages(input=user_msg, history=memory_buffer)
user_msg_token_count = llm.get_num_tokens_from_messages([messages_to_send[-1]])
total_token_count = llm.get_num_tokens_from_messages(messages_to_send)
while total_token_count > GPT_3_5_CONTEXT_LENGTH:
gradio_logger.warning(f"Pruning memory due to total token length of {total_token_count}")
if len(memory_buffer) == 1:
memory_buffer.pop(0)
continue
memory_buffer = memory_buffer[1:]
messages_to_send = template.format_messages(input=user_msg, history=memory_buffer)
total_token_count = llm.get_num_tokens_from_messages(messages_to_send)
return user_msg, memory_buffer
try:
if state is None:
memory = ConversationTokenBufferMemory(
llm=llm,
max_token_limit=GPT_3_5_CONTEXT_LENGTH,
return_messages=True)
chain = ConversationChain(memory=memory, prompt=template, llm=llm)
state = ([], memory, chain)
history, memory, chain = state
gradio_logger.info(f"""[{request.username}] STARTING CHAIN""")
gradio_logger.debug(f"History: {history}")
gradio_logger.debug(f"User input: {inp}")
inp, memory.chat_memory.messages = prep_messages(inp, memory.buffer)
messages_to_send = template.format_messages(input=inp, history=memory.buffer)
total_token_count = llm.get_num_tokens_from_messages(messages_to_send)
gradio_logger.debug(f"Messages to send: {messages_to_send}")
gradio_logger.info(f"Tokens to send: {total_token_count}")
# Run chain and append input.
callback = AsyncIteratorCallbackHandler()
run = asyncio.create_task(chain.apredict(
input=inp, callbacks=[callback]))
history.append((inp, ""))
async for tok in callback.aiter():
user, bot = history[-1]
bot += tok
history[-1] = (user, bot)
yield history, (history, memory, chain)
await run
gradio_logger.info(f"""[{request.username}] ENDING CHAIN""")
gradio_logger.debug(f"History: {history}")
gradio_logger.debug(f"Memory: {memory.json()}")
data_to_flag = {
"history": deepcopy(history),
"username": request.username
},
gradio_logger.debug(f"Data to flag: {data_to_flag}")
gradio_flagger.flag(flag_data=data_to_flag, username=request.username)
except Exception as e:
gradio_logger.exception(e)
raise e
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
llm = ChatOpenAI(model_name="gpt-3.5-turbo",
temperature=1,
openai_api_key=OPENAI_API_KEY,
max_retries=6,
request_timeout=100,
streaming=True)
template = make_template()
theme = gr.themes.Soft()
creds = [(os.getenv("USERNAME"), os.getenv("PASSWORD"))]
gradio_flagger = gr.CSVLogger()
title = "Chat with ChatGPT"
with gr.Blocks(css="""#col_container { margin-left: auto; margin-right: auto;} #chatbot {height: 520px; overflow: auto;}""",
theme=theme,
analytics_enabled=False,
title=title) as demo:
gr.HTML(title)
with gr.Column(elem_id="col_container"):
state = gr.State()
chatbot = gr.Chatbot(label='ChatBot', elem_id="chatbot")
inputs = gr.Textbox(placeholder="Send a message.",
label="Type an input and press Enter")
b1 = gr.Button(value="Submit", variant="secondary").style(
full_width=False)
gradio_flagger.setup([chatbot], "flagged_data_points")
inputs.submit(respond, [inputs, state], [chatbot, state],)
b1.click(respond, [inputs, state], [chatbot, state],)
b1.click(reset_textbox, [], [inputs])
inputs.submit(reset_textbox, [], [inputs])
demo.queue(
max_size=99,
concurrency_count=20,
api_open=False).launch(
debug=True,
auth=auth)