Spaces:
Runtime error
Runtime error
johnowhitaker
commited on
Commit
•
ef231cd
1
Parent(s):
8f8cbb9
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,477 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#@title Gradio demo (used in space: )
|
2 |
+
|
3 |
+
from matplotlib import pyplot as plt
|
4 |
+
from huggingface_hub import PyTorchModelHubMixin
|
5 |
+
import numpy as np
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
### A BIG CHUNK OF THIS IS COPIED FROM LIGHTWEIGHTGAN since the original has an assert requiring GPU
|
9 |
+
|
10 |
+
import os
|
11 |
+
import json
|
12 |
+
import multiprocessing
|
13 |
+
from random import random
|
14 |
+
import math
|
15 |
+
from math import log2, floor
|
16 |
+
from functools import partial
|
17 |
+
from contextlib import contextmanager, ExitStack
|
18 |
+
from pathlib import Path
|
19 |
+
from shutil import rmtree
|
20 |
+
|
21 |
+
import torch
|
22 |
+
from torch.cuda.amp import autocast, GradScaler
|
23 |
+
from torch.optim import Adam
|
24 |
+
from torch import nn, einsum
|
25 |
+
import torch.nn.functional as F
|
26 |
+
from torch.utils.data import Dataset, DataLoader
|
27 |
+
from torch.autograd import grad as torch_grad
|
28 |
+
from torch.utils.data.distributed import DistributedSampler
|
29 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
30 |
+
|
31 |
+
from PIL import Image
|
32 |
+
import torchvision
|
33 |
+
from torchvision import transforms
|
34 |
+
from kornia.filters import filter2d
|
35 |
+
|
36 |
+
from tqdm import tqdm
|
37 |
+
from einops import rearrange, reduce, repeat
|
38 |
+
|
39 |
+
from adabelief_pytorch import AdaBelief
|
40 |
+
|
41 |
+
# helpers
|
42 |
+
|
43 |
+
def DiffAugment(x, types=[]):
|
44 |
+
for p in types:
|
45 |
+
for f in AUGMENT_FNS[p]:
|
46 |
+
x = f(x)
|
47 |
+
return x.contiguous()
|
48 |
+
|
49 |
+
@contextmanager
|
50 |
+
def null_context():
|
51 |
+
yield
|
52 |
+
|
53 |
+
def combine_contexts(contexts):
|
54 |
+
@contextmanager
|
55 |
+
def multi_contexts():
|
56 |
+
with ExitStack() as stack:
|
57 |
+
yield [stack.enter_context(ctx()) for ctx in contexts]
|
58 |
+
return multi_contexts
|
59 |
+
|
60 |
+
def exists(val):
|
61 |
+
return val is not None
|
62 |
+
|
63 |
+
|
64 |
+
def is_power_of_two(val):
|
65 |
+
return log2(val).is_integer()
|
66 |
+
|
67 |
+
def default(val, d):
|
68 |
+
return val if exists(val) else d
|
69 |
+
|
70 |
+
def set_requires_grad(model, bool):
|
71 |
+
for p in model.parameters():
|
72 |
+
p.requires_grad = bool
|
73 |
+
|
74 |
+
def cycle(iterable):
|
75 |
+
while True:
|
76 |
+
for i in iterable:
|
77 |
+
yield i
|
78 |
+
|
79 |
+
def raise_if_nan(t):
|
80 |
+
if torch.isnan(t):
|
81 |
+
raise NanException
|
82 |
+
|
83 |
+
def evaluate_in_chunks(max_batch_size, model, *args):
|
84 |
+
split_args = list(zip(*list(map(lambda x: x.split(max_batch_size, dim=0), args))))
|
85 |
+
chunked_outputs = [model(*i) for i in split_args]
|
86 |
+
if len(chunked_outputs) == 1:
|
87 |
+
return chunked_outputs[0]
|
88 |
+
return torch.cat(chunked_outputs, dim=0)
|
89 |
+
|
90 |
+
def slerp(val, low, high):
|
91 |
+
low_norm = low / torch.norm(low, dim=1, keepdim=True)
|
92 |
+
high_norm = high / torch.norm(high, dim=1, keepdim=True)
|
93 |
+
omega = torch.acos((low_norm * high_norm).sum(1))
|
94 |
+
so = torch.sin(omega)
|
95 |
+
res = (torch.sin((1.0 - val) * omega) / so).unsqueeze(1) * low + (torch.sin(val * omega) / so).unsqueeze(1) * high
|
96 |
+
return res
|
97 |
+
|
98 |
+
def safe_div(n, d):
|
99 |
+
try:
|
100 |
+
res = n / d
|
101 |
+
except ZeroDivisionError:
|
102 |
+
prefix = '' if int(n >= 0) else '-'
|
103 |
+
res = float(f'{prefix}inf')
|
104 |
+
return res
|
105 |
+
|
106 |
+
# loss functions
|
107 |
+
|
108 |
+
def gen_hinge_loss(fake, real):
|
109 |
+
return fake.mean()
|
110 |
+
|
111 |
+
def hinge_loss(real, fake):
|
112 |
+
return (F.relu(1 + real) + F.relu(1 - fake)).mean()
|
113 |
+
|
114 |
+
def dual_contrastive_loss(real_logits, fake_logits):
|
115 |
+
device = real_logits.device
|
116 |
+
real_logits, fake_logits = map(lambda t: rearrange(t, '... -> (...)'), (real_logits, fake_logits))
|
117 |
+
|
118 |
+
def loss_half(t1, t2):
|
119 |
+
t1 = rearrange(t1, 'i -> i ()')
|
120 |
+
t2 = repeat(t2, 'j -> i j', i = t1.shape[0])
|
121 |
+
t = torch.cat((t1, t2), dim = -1)
|
122 |
+
return F.cross_entropy(t, torch.zeros(t1.shape[0], device = device, dtype = torch.long))
|
123 |
+
|
124 |
+
return loss_half(real_logits, fake_logits) + loss_half(-fake_logits, -real_logits)
|
125 |
+
|
126 |
+
# helper classes
|
127 |
+
|
128 |
+
class NanException(Exception):
|
129 |
+
pass
|
130 |
+
|
131 |
+
class EMA():
|
132 |
+
def __init__(self, beta):
|
133 |
+
super().__init__()
|
134 |
+
self.beta = beta
|
135 |
+
def update_average(self, old, new):
|
136 |
+
if not exists(old):
|
137 |
+
return new
|
138 |
+
return old * self.beta + (1 - self.beta) * new
|
139 |
+
|
140 |
+
class RandomApply(nn.Module):
|
141 |
+
def __init__(self, prob, fn, fn_else = lambda x: x):
|
142 |
+
super().__init__()
|
143 |
+
self.fn = fn
|
144 |
+
self.fn_else = fn_else
|
145 |
+
self.prob = prob
|
146 |
+
def forward(self, x):
|
147 |
+
fn = self.fn if random() < self.prob else self.fn_else
|
148 |
+
return fn(x)
|
149 |
+
|
150 |
+
class ChanNorm(nn.Module):
|
151 |
+
def __init__(self, dim, eps = 1e-5):
|
152 |
+
super().__init__()
|
153 |
+
self.eps = eps
|
154 |
+
self.g = nn.Parameter(torch.ones(1, dim, 1, 1))
|
155 |
+
self.b = nn.Parameter(torch.zeros(1, dim, 1, 1))
|
156 |
+
|
157 |
+
def forward(self, x):
|
158 |
+
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
|
159 |
+
mean = torch.mean(x, dim = 1, keepdim = True)
|
160 |
+
return (x - mean) / (var + self.eps).sqrt() * self.g + self.b
|
161 |
+
|
162 |
+
class PreNorm(nn.Module):
|
163 |
+
def __init__(self, dim, fn):
|
164 |
+
super().__init__()
|
165 |
+
self.fn = fn
|
166 |
+
self.norm = ChanNorm(dim)
|
167 |
+
|
168 |
+
def forward(self, x):
|
169 |
+
return self.fn(self.norm(x))
|
170 |
+
|
171 |
+
class Residual(nn.Module):
|
172 |
+
def __init__(self, fn):
|
173 |
+
super().__init__()
|
174 |
+
self.fn = fn
|
175 |
+
|
176 |
+
def forward(self, x):
|
177 |
+
return self.fn(x) + x
|
178 |
+
|
179 |
+
class SumBranches(nn.Module):
|
180 |
+
def __init__(self, branches):
|
181 |
+
super().__init__()
|
182 |
+
self.branches = nn.ModuleList(branches)
|
183 |
+
def forward(self, x):
|
184 |
+
return sum(map(lambda fn: fn(x), self.branches))
|
185 |
+
|
186 |
+
class Blur(nn.Module):
|
187 |
+
def __init__(self):
|
188 |
+
super().__init__()
|
189 |
+
f = torch.Tensor([1, 2, 1])
|
190 |
+
self.register_buffer('f', f)
|
191 |
+
def forward(self, x):
|
192 |
+
f = self.f
|
193 |
+
f = f[None, None, :] * f [None, :, None]
|
194 |
+
return filter2d(x, f, normalized=True)
|
195 |
+
|
196 |
+
# attention
|
197 |
+
|
198 |
+
class DepthWiseConv2d(nn.Module):
|
199 |
+
def __init__(self, dim_in, dim_out, kernel_size, padding = 0, stride = 1, bias = True):
|
200 |
+
super().__init__()
|
201 |
+
self.net = nn.Sequential(
|
202 |
+
nn.Conv2d(dim_in, dim_in, kernel_size = kernel_size, padding = padding, groups = dim_in, stride = stride, bias = bias),
|
203 |
+
nn.Conv2d(dim_in, dim_out, kernel_size = 1, bias = bias)
|
204 |
+
)
|
205 |
+
def forward(self, x):
|
206 |
+
return self.net(x)
|
207 |
+
|
208 |
+
class LinearAttention(nn.Module):
|
209 |
+
def __init__(self, dim, dim_head = 64, heads = 8):
|
210 |
+
super().__init__()
|
211 |
+
self.scale = dim_head ** -0.5
|
212 |
+
self.heads = heads
|
213 |
+
inner_dim = dim_head * heads
|
214 |
+
|
215 |
+
self.nonlin = nn.GELU()
|
216 |
+
self.to_q = nn.Conv2d(dim, inner_dim, 1, bias = False)
|
217 |
+
self.to_kv = DepthWiseConv2d(dim, inner_dim * 2, 3, padding = 1, bias = False)
|
218 |
+
self.to_out = nn.Conv2d(inner_dim, dim, 1)
|
219 |
+
|
220 |
+
def forward(self, fmap):
|
221 |
+
h, x, y = self.heads, *fmap.shape[-2:]
|
222 |
+
q, k, v = (self.to_q(fmap), *self.to_kv(fmap).chunk(2, dim = 1))
|
223 |
+
q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> (b h) (x y) c', h = h), (q, k, v))
|
224 |
+
|
225 |
+
q = q.softmax(dim = -1)
|
226 |
+
k = k.softmax(dim = -2)
|
227 |
+
|
228 |
+
q = q * self.scale
|
229 |
+
|
230 |
+
context = einsum('b n d, b n e -> b d e', k, v)
|
231 |
+
out = einsum('b n d, b d e -> b n e', q, context)
|
232 |
+
out = rearrange(out, '(b h) (x y) d -> b (h d) x y', h = h, x = x, y = y)
|
233 |
+
|
234 |
+
out = self.nonlin(out)
|
235 |
+
return self.to_out(out)
|
236 |
+
|
237 |
+
# global context network
|
238 |
+
# https://arxiv.org/abs/2012.13375
|
239 |
+
# similar to squeeze-excite, but with a simplified attention pooling and a subsequent layer norm
|
240 |
+
|
241 |
+
class GlobalContext(nn.Module):
|
242 |
+
def __init__(
|
243 |
+
self,
|
244 |
+
*,
|
245 |
+
chan_in,
|
246 |
+
chan_out
|
247 |
+
):
|
248 |
+
super().__init__()
|
249 |
+
self.to_k = nn.Conv2d(chan_in, 1, 1)
|
250 |
+
chan_intermediate = max(3, chan_out // 2)
|
251 |
+
|
252 |
+
self.net = nn.Sequential(
|
253 |
+
nn.Conv2d(chan_in, chan_intermediate, 1),
|
254 |
+
nn.LeakyReLU(0.1),
|
255 |
+
nn.Conv2d(chan_intermediate, chan_out, 1),
|
256 |
+
nn.Sigmoid()
|
257 |
+
)
|
258 |
+
def forward(self, x):
|
259 |
+
context = self.to_k(x)
|
260 |
+
context = context.flatten(2).softmax(dim = -1)
|
261 |
+
out = einsum('b i n, b c n -> b c i', context, x.flatten(2))
|
262 |
+
out = out.unsqueeze(-1)
|
263 |
+
return self.net(out)
|
264 |
+
|
265 |
+
# dataset
|
266 |
+
|
267 |
+
def convert_image_to(img_type, image):
|
268 |
+
if image.mode != img_type:
|
269 |
+
return image.convert(img_type)
|
270 |
+
return image
|
271 |
+
|
272 |
+
class identity(object):
|
273 |
+
def __call__(self, tensor):
|
274 |
+
return tensor
|
275 |
+
|
276 |
+
class expand_greyscale(object):
|
277 |
+
def __init__(self, transparent):
|
278 |
+
self.transparent = transparent
|
279 |
+
|
280 |
+
def __call__(self, tensor):
|
281 |
+
channels = tensor.shape[0]
|
282 |
+
num_target_channels = 4 if self.transparent else 3
|
283 |
+
|
284 |
+
if channels == num_target_channels:
|
285 |
+
return tensor
|
286 |
+
|
287 |
+
alpha = None
|
288 |
+
if channels == 1:
|
289 |
+
color = tensor.expand(3, -1, -1)
|
290 |
+
elif channels == 2:
|
291 |
+
color = tensor[:1].expand(3, -1, -1)
|
292 |
+
alpha = tensor[1:]
|
293 |
+
else:
|
294 |
+
raise Exception(f'image with invalid number of channels given {channels}')
|
295 |
+
|
296 |
+
if not exists(alpha) and self.transparent:
|
297 |
+
alpha = torch.ones(1, *tensor.shape[1:], device=tensor.device)
|
298 |
+
|
299 |
+
return color if not self.transparent else torch.cat((color, alpha))
|
300 |
+
|
301 |
+
|
302 |
+
class FCANet(nn.Module):
|
303 |
+
def __init__(
|
304 |
+
self,
|
305 |
+
*,
|
306 |
+
chan_in,
|
307 |
+
chan_out,
|
308 |
+
reduction = 4,
|
309 |
+
width
|
310 |
+
):
|
311 |
+
super().__init__()
|
312 |
+
|
313 |
+
freq_w, freq_h = ([0] * 8), list(range(8)) # in paper, it seems 16 frequencies was ideal
|
314 |
+
dct_weights = get_dct_weights(width, chan_in, [*freq_w, *freq_h], [*freq_h, *freq_w])
|
315 |
+
self.register_buffer('dct_weights', dct_weights)
|
316 |
+
|
317 |
+
chan_intermediate = max(3, chan_out // reduction)
|
318 |
+
|
319 |
+
self.net = nn.Sequential(
|
320 |
+
nn.Conv2d(chan_in, chan_intermediate, 1),
|
321 |
+
nn.LeakyReLU(0.1),
|
322 |
+
nn.Conv2d(chan_intermediate, chan_out, 1),
|
323 |
+
nn.Sigmoid()
|
324 |
+
)
|
325 |
+
|
326 |
+
def forward(self, x):
|
327 |
+
x = reduce(x * self.dct_weights, 'b c (h h1) (w w1) -> b c h1 w1', 'sum', h1 = 1, w1 = 1)
|
328 |
+
return self.net(x)
|
329 |
+
|
330 |
+
# modifiable global variables
|
331 |
+
|
332 |
+
norm_class = nn.BatchNorm2d
|
333 |
+
|
334 |
+
def upsample(scale_factor = 2):
|
335 |
+
return nn.Upsample(scale_factor = scale_factor)
|
336 |
+
|
337 |
+
|
338 |
+
# generative adversarial network
|
339 |
+
|
340 |
+
class Generator(nn.Module):
|
341 |
+
def __init__(
|
342 |
+
self,
|
343 |
+
*,
|
344 |
+
image_size,
|
345 |
+
latent_dim = 256,
|
346 |
+
fmap_max = 512,
|
347 |
+
fmap_inverse_coef = 12,
|
348 |
+
transparent = False,
|
349 |
+
greyscale = False,
|
350 |
+
attn_res_layers = [],
|
351 |
+
freq_chan_attn = False
|
352 |
+
):
|
353 |
+
super().__init__()
|
354 |
+
resolution = log2(image_size)
|
355 |
+
assert is_power_of_two(image_size), 'image size must be a power of 2'
|
356 |
+
|
357 |
+
if transparent:
|
358 |
+
init_channel = 4
|
359 |
+
elif greyscale:
|
360 |
+
init_channel = 1
|
361 |
+
else:
|
362 |
+
init_channel = 3
|
363 |
+
|
364 |
+
fmap_max = default(fmap_max, latent_dim)
|
365 |
+
|
366 |
+
self.initial_conv = nn.Sequential(
|
367 |
+
nn.ConvTranspose2d(latent_dim, latent_dim * 2, 4),
|
368 |
+
norm_class(latent_dim * 2),
|
369 |
+
nn.GLU(dim = 1)
|
370 |
+
)
|
371 |
+
|
372 |
+
num_layers = int(resolution) - 2
|
373 |
+
features = list(map(lambda n: (n, 2 ** (fmap_inverse_coef - n)), range(2, num_layers + 2)))
|
374 |
+
features = list(map(lambda n: (n[0], min(n[1], fmap_max)), features))
|
375 |
+
features = list(map(lambda n: 3 if n[0] >= 8 else n[1], features))
|
376 |
+
features = [latent_dim, *features]
|
377 |
+
|
378 |
+
in_out_features = list(zip(features[:-1], features[1:]))
|
379 |
+
|
380 |
+
self.res_layers = range(2, num_layers + 2)
|
381 |
+
self.layers = nn.ModuleList([])
|
382 |
+
self.res_to_feature_map = dict(zip(self.res_layers, in_out_features))
|
383 |
+
|
384 |
+
self.sle_map = ((3, 7), (4, 8), (5, 9), (6, 10))
|
385 |
+
self.sle_map = list(filter(lambda t: t[0] <= resolution and t[1] <= resolution, self.sle_map))
|
386 |
+
self.sle_map = dict(self.sle_map)
|
387 |
+
|
388 |
+
self.num_layers_spatial_res = 1
|
389 |
+
|
390 |
+
for (res, (chan_in, chan_out)) in zip(self.res_layers, in_out_features):
|
391 |
+
image_width = 2 ** res
|
392 |
+
|
393 |
+
attn = None
|
394 |
+
if image_width in attn_res_layers:
|
395 |
+
attn = PreNorm(chan_in, LinearAttention(chan_in))
|
396 |
+
|
397 |
+
sle = None
|
398 |
+
if res in self.sle_map:
|
399 |
+
residual_layer = self.sle_map[res]
|
400 |
+
sle_chan_out = self.res_to_feature_map[residual_layer - 1][-1]
|
401 |
+
|
402 |
+
if freq_chan_attn:
|
403 |
+
sle = FCANet(
|
404 |
+
chan_in = chan_out,
|
405 |
+
chan_out = sle_chan_out,
|
406 |
+
width = 2 ** (res + 1)
|
407 |
+
)
|
408 |
+
else:
|
409 |
+
sle = GlobalContext(
|
410 |
+
chan_in = chan_out,
|
411 |
+
chan_out = sle_chan_out
|
412 |
+
)
|
413 |
+
|
414 |
+
layer = nn.ModuleList([
|
415 |
+
nn.Sequential(
|
416 |
+
upsample(),
|
417 |
+
Blur(),
|
418 |
+
nn.Conv2d(chan_in, chan_out * 2, 3, padding = 1),
|
419 |
+
norm_class(chan_out * 2),
|
420 |
+
nn.GLU(dim = 1)
|
421 |
+
),
|
422 |
+
sle,
|
423 |
+
attn
|
424 |
+
])
|
425 |
+
self.layers.append(layer)
|
426 |
+
|
427 |
+
self.out_conv = nn.Conv2d(features[-1], init_channel, 3, padding = 1)
|
428 |
+
|
429 |
+
def forward(self, x):
|
430 |
+
x = rearrange(x, 'b c -> b c () ()')
|
431 |
+
x = self.initial_conv(x)
|
432 |
+
x = F.normalize(x, dim = 1)
|
433 |
+
|
434 |
+
residuals = dict()
|
435 |
+
|
436 |
+
for (res, (up, sle, attn)) in zip(self.res_layers, self.layers):
|
437 |
+
if exists(attn):
|
438 |
+
x = attn(x) + x
|
439 |
+
|
440 |
+
x = up(x)
|
441 |
+
|
442 |
+
if exists(sle):
|
443 |
+
out_res = self.sle_map[res]
|
444 |
+
residual = sle(x)
|
445 |
+
residuals[out_res] = residual
|
446 |
+
|
447 |
+
next_res = res + 1
|
448 |
+
if next_res in residuals:
|
449 |
+
x = x * residuals[next_res]
|
450 |
+
|
451 |
+
return self.out_conv(x)
|
452 |
+
|
453 |
+
|
454 |
+
#### ACTUALLY LOAD THE MODEL AND DEFINE THE INTERFACE
|
455 |
+
|
456 |
+
# Initialize a generator model
|
457 |
+
gan_new = Generator(latent_dim=256, image_size=256, attn_res_layers = [32])
|
458 |
+
|
459 |
+
# Load from local saved state dict
|
460 |
+
# gan_new.load_state_dict(torch.load('/content/orbgan_e3_state_dict.pt'))
|
461 |
+
|
462 |
+
# Load from model hub:
|
463 |
+
class GeneratorWithPyTorchModelHubMixin(gan_new.__class__, PyTorchModelHubMixin):
|
464 |
+
pass
|
465 |
+
gan_new.__class__ = GeneratorWithPyTorchModelHubMixin
|
466 |
+
gan_new = gan_new.from_pretrained('johnowhitaker/orbgan_e1', latent_dim=256, image_size=256, attn_res_layers = [32])
|
467 |
+
|
468 |
+
def gen_ims(n_rows):
|
469 |
+
ims = gan_new(torch.randn(int(n_rows)**2, 256)).clamp_(0., 1.)
|
470 |
+
grid = torchvision.utils.make_grid(ims, nrow=int(n_rows)).permute(1, 2, 0).detach().cpu().numpy()
|
471 |
+
return (grid*255).astype(np.uint8)
|
472 |
+
iface = gr.Interface(fn=gen_ims,
|
473 |
+
inputs=[gr.inputs.Number(label="N rows", default=3)],
|
474 |
+
outputs=[gr.outputs.Image(type="numpy", label="Generated Images")],
|
475 |
+
title='Demo for https://huggingface.co/johnowhitaker/orbgan_e1'
|
476 |
+
)
|
477 |
+
iface.launch()
|