Spaces:
Running
Running
File size: 25,946 Bytes
3affa92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 |
# -*- coding: utf-8 -*-
""" Finetuning functions for doing transfer learning to new datasets.
"""
from __future__ import print_function
import uuid
from time import sleep
from io import open
import math
import pickle
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import accuracy_score
from torch.autograd import Variable
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.sampler import BatchSampler, SequentialSampler
from torch.nn.utils import clip_grad_norm
from sklearn.metrics import f1_score
from torchmoji.global_variables import (FINETUNING_METHODS,
FINETUNING_METRICS,
WEIGHTS_DIR)
from torchmoji.tokenizer import tokenize
from torchmoji.sentence_tokenizer import SentenceTokenizer
try:
unicode
IS_PYTHON2 = True
except NameError:
unicode = str
IS_PYTHON2 = False
def load_benchmark(path, vocab, extend_with=0):
""" Loads the given benchmark dataset.
Tokenizes the texts using the provided vocabulary, extending it with
words from the training dataset if extend_with > 0. Splits them into
three lists: training, validation and testing (in that order).
Also calculates the maximum length of the texts and the
suggested batch_size.
# Arguments:
path: Path to the dataset to be loaded.
vocab: Vocabulary to be used for tokenizing texts.
extend_with: If > 0, the vocabulary will be extended with up to
extend_with tokens from the training set before tokenizing.
# Returns:
A dictionary with the following fields:
texts: List of three lists, containing tokenized inputs for
training, validation and testing (in that order).
labels: List of three lists, containing labels for training,
validation and testing (in that order).
added: Number of tokens added to the vocabulary.
batch_size: Batch size.
maxlen: Maximum length of an input.
"""
# Pre-processing dataset
with open(path, 'rb') as dataset:
if IS_PYTHON2:
data = pickle.load(dataset)
else:
data = pickle.load(dataset, fix_imports=True)
# Decode data
try:
texts = [unicode(x) for x in data['texts']]
except UnicodeDecodeError:
texts = [x.decode('utf-8') for x in data['texts']]
# Extract labels
labels = [x['label'] for x in data['info']]
batch_size, maxlen = calculate_batchsize_maxlen(texts)
st = SentenceTokenizer(vocab, maxlen)
# Split up dataset. Extend the existing vocabulary with up to extend_with
# tokens from the training dataset.
texts, labels, added = st.split_train_val_test(texts,
labels,
[data['train_ind'],
data['val_ind'],
data['test_ind']],
extend_with=extend_with)
return {'texts': texts,
'labels': labels,
'added': added,
'batch_size': batch_size,
'maxlen': maxlen}
def calculate_batchsize_maxlen(texts):
""" Calculates the maximum length in the provided texts and a suitable
batch size. Rounds up maxlen to the nearest multiple of ten.
# Arguments:
texts: List of inputs.
# Returns:
Batch size,
max length
"""
def roundup(x):
return int(math.ceil(x / 10.0)) * 10
# Calculate max length of sequences considered
# Adjust batch_size accordingly to prevent GPU overflow
lengths = [len(tokenize(t)) for t in texts]
maxlen = roundup(np.percentile(lengths, 80.0))
batch_size = 250 if maxlen <= 100 else 50
return batch_size, maxlen
def freeze_layers(model, unfrozen_types=[], unfrozen_keyword=None):
""" Freezes all layers in the given model, except for ones that are
explicitly specified to not be frozen.
# Arguments:
model: Model whose layers should be modified.
unfrozen_types: List of layer types which shouldn't be frozen.
unfrozen_keyword: Name keywords of layers that shouldn't be frozen.
# Returns:
Model with the selected layers frozen.
"""
# Get trainable modules
trainable_modules = [(n, m) for n, m in model.named_children() if len([id(p) for p in m.parameters()]) != 0]
for name, module in trainable_modules:
trainable = (any(typ in str(module) for typ in unfrozen_types) or
(unfrozen_keyword is not None and unfrozen_keyword.lower() in name.lower()))
change_trainable(module, trainable, verbose=False)
return model
def change_trainable(module, trainable, verbose=False):
""" Helper method that freezes or unfreezes a given layer.
# Arguments:
module: Module to be modified.
trainable: Whether the layer should be frozen or unfrozen.
verbose: Verbosity flag.
"""
if verbose: print('Changing MODULE', module, 'to trainable =', trainable)
for name, param in module.named_parameters():
if verbose: print('Setting weight', name, 'to trainable =', trainable)
param.requires_grad = trainable
if verbose:
action = 'Unfroze' if trainable else 'Froze'
if verbose: print("{} {}".format(action, module))
def find_f1_threshold(model, val_gen, test_gen, average='binary'):
""" Choose a threshold for F1 based on the validation dataset
(see https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4442797/
for details on why to find another threshold than simply 0.5)
# Arguments:
model: pyTorch model
val_gen: Validation set dataloader.
test_gen: Testing set dataloader.
# Returns:
F1 score for the given data and
the corresponding F1 threshold
"""
thresholds = np.arange(0.01, 0.5, step=0.01)
f1_scores = []
model.eval()
val_out = [(y, model(X)) for X, y in val_gen]
y_val, y_pred_val = (list(t) for t in zip(*val_out))
test_out = [(y, model(X)) for X, y in test_gen]
y_test, y_pred_test = (list(t) for t in zip(*val_out))
for t in thresholds:
y_pred_val_ind = (y_pred_val > t)
f1_val = f1_score(y_val, y_pred_val_ind, average=average)
f1_scores.append(f1_val)
best_t = thresholds[np.argmax(f1_scores)]
y_pred_ind = (y_pred_test > best_t)
f1_test = f1_score(y_test, y_pred_ind, average=average)
return f1_test, best_t
def finetune(model, texts, labels, nb_classes, batch_size, method,
metric='acc', epoch_size=5000, nb_epochs=1000, embed_l2=1E-6,
verbose=1):
""" Compiles and finetunes the given pytorch model.
# Arguments:
model: Model to be finetuned
texts: List of three lists, containing tokenized inputs for training,
validation and testing (in that order).
labels: List of three lists, containing labels for training,
validation and testing (in that order).
nb_classes: Number of classes in the dataset.
batch_size: Batch size.
method: Finetuning method to be used. For available methods, see
FINETUNING_METHODS in global_variables.py.
metric: Evaluation metric to be used. For available metrics, see
FINETUNING_METRICS in global_variables.py.
epoch_size: Number of samples in an epoch.
nb_epochs: Number of epochs. Doesn't matter much as early stopping is used.
embed_l2: L2 regularization for the embedding layer.
verbose: Verbosity flag.
# Returns:
Model after finetuning,
score after finetuning using the provided metric.
"""
if method not in FINETUNING_METHODS:
raise ValueError('ERROR (finetune): Invalid method parameter. '
'Available options: {}'.format(FINETUNING_METHODS))
if metric not in FINETUNING_METRICS:
raise ValueError('ERROR (finetune): Invalid metric parameter. '
'Available options: {}'.format(FINETUNING_METRICS))
train_gen = get_data_loader(texts[0], labels[0], batch_size,
extended_batch_sampler=True, epoch_size=epoch_size)
val_gen = get_data_loader(texts[1], labels[1], batch_size,
extended_batch_sampler=False)
test_gen = get_data_loader(texts[2], labels[2], batch_size,
extended_batch_sampler=False)
checkpoint_path = '{}/torchmoji-checkpoint-{}.bin' \
.format(WEIGHTS_DIR, str(uuid.uuid4()))
if method in ['last', 'new']:
lr = 0.001
elif method in ['full', 'chain-thaw']:
lr = 0.0001
loss_op = nn.BCEWithLogitsLoss() if nb_classes <= 2 \
else nn.CrossEntropyLoss()
# Freeze layers if using last
if method == 'last':
model = freeze_layers(model, unfrozen_keyword='output_layer')
# Define optimizer, for chain-thaw we define it later (after freezing)
if method == 'last':
adam = optim.Adam((p for p in model.parameters() if p.requires_grad), lr=lr)
elif method in ['full', 'new']:
# Add L2 regulation on embeddings only
embed_params_id = [id(p) for p in model.embed.parameters()]
output_layer_params_id = [id(p) for p in model.output_layer.parameters()]
base_params = [p for p in model.parameters()
if id(p) not in embed_params_id and id(p) not in output_layer_params_id and p.requires_grad]
embed_params = [p for p in model.parameters() if id(p) in embed_params_id and p.requires_grad]
output_layer_params = [p for p in model.parameters() if id(p) in output_layer_params_id and p.requires_grad]
adam = optim.Adam([
{'params': base_params},
{'params': embed_params, 'weight_decay': embed_l2},
{'params': output_layer_params, 'lr': 0.001},
], lr=lr)
# Training
if verbose:
print('Method: {}'.format(method))
print('Metric: {}'.format(metric))
print('Classes: {}'.format(nb_classes))
if method == 'chain-thaw':
result = chain_thaw(model, train_gen, val_gen, test_gen, nb_epochs, checkpoint_path, loss_op, embed_l2=embed_l2,
evaluate=metric, verbose=verbose)
else:
result = tune_trainable(model, loss_op, adam, train_gen, val_gen, test_gen, nb_epochs, checkpoint_path,
evaluate=metric, verbose=verbose)
return model, result
def tune_trainable(model, loss_op, optim_op, train_gen, val_gen, test_gen,
nb_epochs, checkpoint_path, patience=5, evaluate='acc',
verbose=2):
""" Finetunes the given model using the accuracy measure.
# Arguments:
model: Model to be finetuned.
nb_classes: Number of classes in the given dataset.
train: Training data, given as a tuple of (inputs, outputs)
val: Validation data, given as a tuple of (inputs, outputs)
test: Testing data, given as a tuple of (inputs, outputs)
epoch_size: Number of samples in an epoch.
nb_epochs: Number of epochs.
batch_size: Batch size.
checkpoint_weight_path: Filepath where weights will be checkpointed to
during training. This file will be rewritten by the function.
patience: Patience for callback methods.
evaluate: Evaluation method to use. Can be 'acc' or 'weighted_f1'.
verbose: Verbosity flag.
# Returns:
Accuracy of the trained model, ONLY if 'evaluate' is set.
"""
if verbose:
print("Trainable weights: {}".format([n for n, p in model.named_parameters() if p.requires_grad]))
print("Training...")
if evaluate == 'acc':
print("Evaluation on test set prior training:", evaluate_using_acc(model, test_gen))
elif evaluate == 'weighted_f1':
print("Evaluation on test set prior training:", evaluate_using_weighted_f1(model, test_gen, val_gen))
fit_model(model, loss_op, optim_op, train_gen, val_gen, nb_epochs, checkpoint_path, patience)
# Reload the best weights found to avoid overfitting
# Wait a bit to allow proper closing of weights file
sleep(1)
model.load_state_dict(torch.load(checkpoint_path))
if verbose >= 2:
print("Loaded weights from {}".format(checkpoint_path))
if evaluate == 'acc':
return evaluate_using_acc(model, test_gen)
elif evaluate == 'weighted_f1':
return evaluate_using_weighted_f1(model, test_gen, val_gen)
def evaluate_using_weighted_f1(model, test_gen, val_gen):
""" Evaluation function using macro weighted F1 score.
# Arguments:
model: Model to be evaluated.
X_test: Inputs of the testing set.
y_test: Outputs of the testing set.
X_val: Inputs of the validation set.
y_val: Outputs of the validation set.
batch_size: Batch size.
# Returns:
Weighted F1 score of the given model.
"""
# Evaluate on test and val data
f1_test, _ = find_f1_threshold(model, test_gen, val_gen, average='weighted_f1')
return f1_test
def evaluate_using_acc(model, test_gen):
""" Evaluation function using accuracy.
# Arguments:
model: Model to be evaluated.
test_gen: Testing data iterator (DataLoader)
# Returns:
Accuracy of the given model.
"""
# Validate on test_data
model.eval()
accs = []
for i, data in enumerate(test_gen):
x, y = data
outs = model(x)
if model.nb_classes > 2:
pred = torch.max(outs, 1)[1]
acc = accuracy_score(y.squeeze().numpy(), pred.squeeze().numpy())
else:
pred = (outs >= 0).long()
acc = (pred == y).double().sum() / len(pred)
accs.append(acc)
return np.mean(accs)
def chain_thaw(model, train_gen, val_gen, test_gen, nb_epochs, checkpoint_path, loss_op,
patience=5, initial_lr=0.001, next_lr=0.0001, embed_l2=1E-6, evaluate='acc', verbose=1):
""" Finetunes given model using chain-thaw and evaluates using accuracy.
# Arguments:
model: Model to be finetuned.
train: Training data, given as a tuple of (inputs, outputs)
val: Validation data, given as a tuple of (inputs, outputs)
test: Testing data, given as a tuple of (inputs, outputs)
batch_size: Batch size.
loss: Loss function to be used during training.
epoch_size: Number of samples in an epoch.
nb_epochs: Number of epochs.
checkpoint_weight_path: Filepath where weights will be checkpointed to
during training. This file will be rewritten by the function.
initial_lr: Initial learning rate. Will only be used for the first
training step (i.e. the output_layer layer)
next_lr: Learning rate for every subsequent step.
seed: Random number generator seed.
verbose: Verbosity flag.
evaluate: Evaluation method to use. Can be 'acc' or 'weighted_f1'.
# Returns:
Accuracy of the finetuned model.
"""
if verbose:
print('Training..')
# Train using chain-thaw
train_by_chain_thaw(model, train_gen, val_gen, loss_op, patience, nb_epochs, checkpoint_path,
initial_lr, next_lr, embed_l2, verbose)
if evaluate == 'acc':
return evaluate_using_acc(model, test_gen)
elif evaluate == 'weighted_f1':
return evaluate_using_weighted_f1(model, test_gen, val_gen)
def train_by_chain_thaw(model, train_gen, val_gen, loss_op, patience, nb_epochs, checkpoint_path,
initial_lr=0.001, next_lr=0.0001, embed_l2=1E-6, verbose=1):
""" Finetunes model using the chain-thaw method.
This is done as follows:
1) Freeze every layer except the last (output_layer) layer and train it.
2) Freeze every layer except the first layer and train it.
3) Freeze every layer except the second etc., until the second last layer.
4) Unfreeze all layers and train entire model.
# Arguments:
model: Model to be trained.
train_gen: Training sample generator.
val_data: Validation data.
loss: Loss function to be used.
finetuning_args: Training early stopping and checkpoint saving parameters
epoch_size: Number of samples in an epoch.
nb_epochs: Number of epochs.
checkpoint_weight_path: Where weight checkpoints should be saved.
batch_size: Batch size.
initial_lr: Initial learning rate. Will only be used for the first
training step (i.e. the output_layer layer)
next_lr: Learning rate for every subsequent step.
verbose: Verbosity flag.
"""
# Get trainable layers
layers = [m for m in model.children() if len([id(p) for p in m.parameters()]) != 0]
# Bring last layer to front
layers.insert(0, layers.pop(len(layers) - 1))
# Add None to the end to signify finetuning all layers
layers.append(None)
lr = None
# Finetune each layer one by one and finetune all of them at once
# at the end
for layer in layers:
if lr is None:
lr = initial_lr
elif lr == initial_lr:
lr = next_lr
# Freeze all except current layer
for _layer in layers:
if _layer is not None:
trainable = _layer == layer or layer is None
change_trainable(_layer, trainable=trainable, verbose=False)
# Verify we froze the right layers
for _layer in model.children():
assert all(p.requires_grad == (_layer == layer) for p in _layer.parameters()) or layer is None
if verbose:
if layer is None:
print('Finetuning all layers')
else:
print('Finetuning {}'.format(layer))
special_params = [id(p) for p in model.embed.parameters()]
base_params = [p for p in model.parameters() if id(p) not in special_params and p.requires_grad]
embed_parameters = [p for p in model.parameters() if id(p) in special_params and p.requires_grad]
adam = optim.Adam([
{'params': base_params},
{'params': embed_parameters, 'weight_decay': embed_l2},
], lr=lr)
fit_model(model, loss_op, adam, train_gen, val_gen, nb_epochs,
checkpoint_path, patience)
# Reload the best weights found to avoid overfitting
# Wait a bit to allow proper closing of weights file
sleep(1)
model.load_state_dict(torch.load(checkpoint_path))
if verbose >= 2:
print("Loaded weights from {}".format(checkpoint_path))
def calc_loss(loss_op, pred, yv):
if type(loss_op) is nn.CrossEntropyLoss:
return loss_op(pred.squeeze(), yv.squeeze())
else:
return loss_op(pred.squeeze(), yv.squeeze().float())
def fit_model(model, loss_op, optim_op, train_gen, val_gen, epochs,
checkpoint_path, patience):
""" Analog to Keras fit_generator function.
# Arguments:
model: Model to be finetuned.
loss_op: loss operation (BCEWithLogitsLoss or CrossEntropy for e.g.)
optim_op: optimization operation (Adam e.g.)
train_gen: Training data iterator (DataLoader)
val_gen: Validation data iterator (DataLoader)
epochs: Number of epochs.
checkpoint_path: Filepath where weights will be checkpointed to
during training. This file will be rewritten by the function.
patience: Patience for callback methods.
verbose: Verbosity flag.
# Returns:
Accuracy of the trained model, ONLY if 'evaluate' is set.
"""
# Save original checkpoint
torch.save(model.state_dict(), checkpoint_path)
model.eval()
best_loss = np.mean([calc_loss(loss_op, model(Variable(xv)), Variable(yv)).data.cpu().numpy()[0] for xv, yv in val_gen])
print("original val loss", best_loss)
epoch_without_impr = 0
for epoch in range(epochs):
for i, data in enumerate(train_gen):
X_train, y_train = data
X_train = Variable(X_train, requires_grad=False)
y_train = Variable(y_train, requires_grad=False)
model.train()
optim_op.zero_grad()
output = model(X_train)
loss = calc_loss(loss_op, output, y_train)
loss.backward()
clip_grad_norm(model.parameters(), 1)
optim_op.step()
acc = evaluate_using_acc(model, [(X_train.data, y_train.data)])
print("== Epoch", epoch, "step", i, "train loss", loss.data.cpu().numpy()[0], "train acc", acc)
model.eval()
acc = evaluate_using_acc(model, val_gen)
print("val acc", acc)
val_loss = np.mean([calc_loss(loss_op, model(Variable(xv)), Variable(yv)).data.cpu().numpy()[0] for xv, yv in val_gen])
print("val loss", val_loss)
if best_loss is not None and val_loss >= best_loss:
epoch_without_impr += 1
print('No improvement over previous best loss: ', best_loss)
# Save checkpoint
if best_loss is None or val_loss < best_loss:
best_loss = val_loss
torch.save(model.state_dict(), checkpoint_path)
print('Saving model at', checkpoint_path)
# Early stopping
if epoch_without_impr >= patience:
break
def get_data_loader(X_in, y_in, batch_size, extended_batch_sampler=True, epoch_size=25000, upsample=False, seed=42):
""" Returns a dataloader that enables larger epochs on small datasets and
has upsampling functionality.
# Arguments:
X_in: Inputs of the given dataset.
y_in: Outputs of the given dataset.
batch_size: Batch size.
epoch_size: Number of samples in an epoch.
upsample: Whether upsampling should be done. This flag should only be
set on binary class problems.
# Returns:
DataLoader.
"""
dataset = DeepMojiDataset(X_in, y_in)
if extended_batch_sampler:
batch_sampler = DeepMojiBatchSampler(y_in, batch_size, epoch_size=epoch_size, upsample=upsample, seed=seed)
else:
batch_sampler = BatchSampler(SequentialSampler(y_in), batch_size, drop_last=False)
return DataLoader(dataset, batch_sampler=batch_sampler, num_workers=0)
class DeepMojiDataset(Dataset):
""" A simple Dataset class.
# Arguments:
X_in: Inputs of the given dataset.
y_in: Outputs of the given dataset.
# __getitem__ output:
(torch.LongTensor, torch.LongTensor)
"""
def __init__(self, X_in, y_in):
# Check if we have Torch.LongTensor inputs (assume Numpy array otherwise)
if not isinstance(X_in, torch.LongTensor):
X_in = torch.from_numpy(X_in.astype('int64')).long()
if not isinstance(y_in, torch.LongTensor):
y_in = torch.from_numpy(y_in.astype('int64')).long()
self.X_in = torch.split(X_in, 1, dim=0)
self.y_in = torch.split(y_in, 1, dim=0)
def __len__(self):
return len(self.X_in)
def __getitem__(self, idx):
return self.X_in[idx].squeeze(), self.y_in[idx].squeeze()
class DeepMojiBatchSampler(object):
"""A Batch sampler that enables larger epochs on small datasets and
has upsampling functionality.
# Arguments:
y_in: Labels of the dataset.
batch_size: Batch size.
epoch_size: Number of samples in an epoch.
upsample: Whether upsampling should be done. This flag should only be
set on binary class problems.
seed: Random number generator seed.
# __iter__ output:
iterator of lists (batches) of indices in the dataset
"""
def __init__(self, y_in, batch_size, epoch_size, upsample, seed):
self.batch_size = batch_size
self.epoch_size = epoch_size
self.upsample = upsample
np.random.seed(seed)
if upsample:
# Should only be used on binary class problems
assert len(y_in.shape) == 1
neg = np.where(y_in.numpy() == 0)[0]
pos = np.where(y_in.numpy() == 1)[0]
assert epoch_size % 2 == 0
samples_pr_class = int(epoch_size / 2)
else:
ind = range(len(y_in))
if not upsample:
# Randomly sample observations in a balanced way
self.sample_ind = np.random.choice(ind, epoch_size, replace=True)
else:
# Randomly sample observations in a balanced way
sample_neg = np.random.choice(neg, samples_pr_class, replace=True)
sample_pos = np.random.choice(pos, samples_pr_class, replace=True)
concat_ind = np.concatenate((sample_neg, sample_pos), axis=0)
# Shuffle to avoid labels being in specific order
# (all negative then positive)
p = np.random.permutation(len(concat_ind))
self.sample_ind = concat_ind[p]
label_dist = np.mean(y_in.numpy()[self.sample_ind])
assert(label_dist > 0.45)
assert(label_dist < 0.55)
def __iter__(self):
# Hand-off data using batch_size
for i in range(int(self.epoch_size/self.batch_size)):
start = i * self.batch_size
end = min(start + self.batch_size, self.epoch_size)
yield self.sample_ind[start:end]
def __len__(self):
# Take care of the last (maybe incomplete) batch
return (self.epoch_size + self.batch_size - 1) // self.batch_size
|