Spaces:
Running
Running
from flask import Flask, request, jsonify | |
import asyncio | |
from hypercorn.asyncio import serve | |
from hypercorn.config import Config | |
import torch.nn.functional as F | |
from torch import nn | |
import os | |
os.environ['CURL_CA_BUNDLE'] = '' | |
app = Flask(__name__) | |
from sentence_transformers import SentenceTransformer | |
sentencemodel = SentenceTransformer('johnpaulbin/toxic-gte-small-3') | |
USE_GPU = False | |
""" Use torchMoji to predict emojis from a single text input | |
""" | |
import numpy as np | |
import emoji, json | |
from torchmoji.global_variables import PRETRAINED_PATH, VOCAB_PATH | |
from torchmoji.sentence_tokenizer import SentenceTokenizer | |
from torchmoji.model_def import torchmoji_emojis | |
import torch | |
# Emoji map in emoji_overview.png | |
EMOJIS = ":joy: :unamused: :weary: :sob: :heart_eyes: \ | |
:pensive: :ok_hand: :blush: :heart: :smirk: \ | |
:grin: :notes: :flushed: :100: :sleeping: \ | |
:relieved: :relaxed: :raised_hands: :two_hearts: :expressionless: \ | |
:sweat_smile: :pray: :confused: :kissing_heart: :heartbeat: \ | |
:neutral_face: :information_desk_person: :disappointed: :see_no_evil: :tired_face: \ | |
:v: :sunglasses: :rage: :thumbsup: :cry: \ | |
:sleepy: :yum: :triumph: :hand: :mask: \ | |
:clap: :eyes: :gun: :persevere: :smiling_imp: \ | |
:sweat: :broken_heart: :yellow_heart: :musical_note: :speak_no_evil: \ | |
:wink: :skull: :confounded: :smile: :stuck_out_tongue_winking_eye: \ | |
:angry: :no_good: :muscle: :facepunch: :purple_heart: \ | |
:sparkling_heart: :blue_heart: :grimacing: :sparkles:".split(' ') | |
def top_elements(array, k): | |
ind = np.argpartition(array, -k)[-k:] | |
return ind[np.argsort(array[ind])][::-1] | |
with open("vocabulary.json", 'r') as f: | |
vocabulary = json.load(f) | |
st = SentenceTokenizer(vocabulary, 100) | |
emojimodel = torchmoji_emojis("pytorch_model.bin") | |
if USE_GPU: | |
emojimodel.to("cuda:0") | |
def deepmojify(sentence, top_n=5, prob_only=False): | |
list_emojis = [] | |
def top_elements(array, k): | |
ind = np.argpartition(array, -k)[-k:] | |
return ind[np.argsort(array[ind])][::-1] | |
tokenized, _, _ = st.tokenize_sentences([sentence]) | |
tokenized = np.array(tokenized).astype(int) # convert to float first | |
if USE_GPU: | |
tokenized = torch.tensor(tokenized).cuda() # then convert to PyTorch tensor | |
prob = emojimodel.forward(tokenized)[0] | |
if not USE_GPU: | |
prob = torch.tensor(prob) | |
if prob_only: | |
return prob | |
emoji_ids = top_elements(prob.cpu().numpy(), top_n) | |
emojis = map(lambda x: EMOJIS[x], emoji_ids) | |
list_emojis.append(emoji.emojize(f"{' '.join(emojis)}", language='alias')) | |
# returning the emojis as a list named as list_emojis | |
return list_emojis, prob | |
model = nn.Sequential( | |
nn.Linear(448, 300), # Increase the number of neurons | |
nn.ReLU(), | |
nn.BatchNorm1d(300), # Batch normalization | |
nn.Linear(300, 300), # Increase the number of neurons | |
nn.ReLU(), | |
nn.BatchNorm1d(300), # Batch normalization | |
nn.Linear(300, 200), # Increase the number of neurons | |
nn.ReLU(), | |
nn.BatchNorm1d(200), # Batch normalization | |
nn.Linear(200, 125), # Increase the number of neurons | |
nn.ReLU(), | |
nn.BatchNorm1d(125), # Batch normalization | |
nn.Linear(125, 2), | |
nn.Dropout(0.05) # Dropout | |
) | |
model.load_state_dict(torch.load("large.pth", map_location=torch.device('cpu'))) | |
model.eval() | |
def translate(): | |
data = request.get_json() | |
TEXT = data['text'].lower() | |
probs = deepmojify(TEXT, prob_only=True) | |
embedding = sentencemodel.encode(TEXT, convert_to_tensor=True) | |
INPUT = torch.cat((probs, embedding)) | |
output = F.softmax(model(INPUT.view(1, -1)), dim=1) | |
if output[0][1] > 0.68: | |
output = "true" | |
else: | |
output = "false" | |
return output | |
def translateverbose(): | |
data = request.get_json() | |
TEXT = data['text'].lower() | |
probs = deepmojify(TEXT, prob_only=True) | |
embedding = sentencemodel.encode(TEXT, convert_to_tensor=True) | |
INPUT = torch.cat((probs, embedding)) | |
output = F.softmax(model(INPUT.view(1, -1)), dim=1) | |
if output[0][1] > 0.4: | |
output = "true" + str(output[0][1]) | |
else: | |
output = "false" + str(output[0][0]) | |
return output | |
# Define more routes for other operations like download_model, etc. | |
if __name__ == "__main__": | |
config = Config() | |
config.bind = ["0.0.0.0:7860"] # You can specify the host and port here | |
asyncio.run(serve(app, config)) |