beanbox-apis / torchmoji /class_avg_finetuning.py
johnpaulbin's picture
First model version
3affa92
raw
history blame
12.8 kB
# -*- coding: utf-8 -*-
""" Class average finetuning functions. Before using any of these finetuning
functions, ensure that the model is set up with nb_classes=2.
"""
from __future__ import print_function
import uuid
from time import sleep
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torchmoji.global_variables import (
FINETUNING_METHODS,
WEIGHTS_DIR)
from torchmoji.finetuning import (
freeze_layers,
get_data_loader,
fit_model,
train_by_chain_thaw,
find_f1_threshold)
def relabel(y, current_label_nr, nb_classes):
""" Makes a binary classification for a specific class in a
multi-class dataset.
# Arguments:
y: Outputs to be relabelled.
current_label_nr: Current label number.
nb_classes: Total number of classes.
# Returns:
Relabelled outputs of a given multi-class dataset into a binary
classification dataset.
"""
# Handling binary classification
if nb_classes == 2 and len(y.shape) == 1:
return y
y_new = np.zeros(len(y))
y_cut = y[:, current_label_nr]
label_pos = np.where(y_cut == 1)[0]
y_new[label_pos] = 1
return y_new
def class_avg_finetune(model, texts, labels, nb_classes, batch_size,
method, epoch_size=5000, nb_epochs=1000, embed_l2=1E-6,
verbose=True):
""" Compiles and finetunes the given model.
# Arguments:
model: Model to be finetuned
texts: List of three lists, containing tokenized inputs for training,
validation and testing (in that order).
labels: List of three lists, containing labels for training,
validation and testing (in that order).
nb_classes: Number of classes in the dataset.
batch_size: Batch size.
method: Finetuning method to be used. For available methods, see
FINETUNING_METHODS in global_variables.py. Note that the model
should be defined accordingly (see docstring for torchmoji_transfer())
epoch_size: Number of samples in an epoch.
nb_epochs: Number of epochs. Doesn't matter much as early stopping is used.
embed_l2: L2 regularization for the embedding layer.
verbose: Verbosity flag.
# Returns:
Model after finetuning,
score after finetuning using the class average F1 metric.
"""
if method not in FINETUNING_METHODS:
raise ValueError('ERROR (class_avg_tune_trainable): '
'Invalid method parameter. '
'Available options: {}'.format(FINETUNING_METHODS))
(X_train, y_train) = (texts[0], labels[0])
(X_val, y_val) = (texts[1], labels[1])
(X_test, y_test) = (texts[2], labels[2])
checkpoint_path = '{}/torchmoji-checkpoint-{}.bin' \
.format(WEIGHTS_DIR, str(uuid.uuid4()))
f1_init_path = '{}/torchmoji-f1-init-{}.bin' \
.format(WEIGHTS_DIR, str(uuid.uuid4()))
if method in ['last', 'new']:
lr = 0.001
elif method in ['full', 'chain-thaw']:
lr = 0.0001
loss_op = nn.BCEWithLogitsLoss()
# Freeze layers if using last
if method == 'last':
model = freeze_layers(model, unfrozen_keyword='output_layer')
# Define optimizer, for chain-thaw we define it later (after freezing)
if method == 'last':
adam = optim.Adam((p for p in model.parameters() if p.requires_grad), lr=lr)
elif method in ['full', 'new']:
# Add L2 regulation on embeddings only
special_params = [id(p) for p in model.embed.parameters()]
base_params = [p for p in model.parameters() if id(p) not in special_params and p.requires_grad]
embed_parameters = [p for p in model.parameters() if id(p) in special_params and p.requires_grad]
adam = optim.Adam([
{'params': base_params},
{'params': embed_parameters, 'weight_decay': embed_l2},
], lr=lr)
# Training
if verbose:
print('Method: {}'.format(method))
print('Classes: {}'.format(nb_classes))
if method == 'chain-thaw':
result = class_avg_chainthaw(model, nb_classes=nb_classes,
loss_op=loss_op,
train=(X_train, y_train),
val=(X_val, y_val),
test=(X_test, y_test),
batch_size=batch_size,
epoch_size=epoch_size,
nb_epochs=nb_epochs,
checkpoint_weight_path=checkpoint_path,
f1_init_weight_path=f1_init_path,
verbose=verbose)
else:
result = class_avg_tune_trainable(model, nb_classes=nb_classes,
loss_op=loss_op,
optim_op=adam,
train=(X_train, y_train),
val=(X_val, y_val),
test=(X_test, y_test),
epoch_size=epoch_size,
nb_epochs=nb_epochs,
batch_size=batch_size,
init_weight_path=f1_init_path,
checkpoint_weight_path=checkpoint_path,
verbose=verbose)
return model, result
def prepare_labels(y_train, y_val, y_test, iter_i, nb_classes):
# Relabel into binary classification
y_train_new = relabel(y_train, iter_i, nb_classes)
y_val_new = relabel(y_val, iter_i, nb_classes)
y_test_new = relabel(y_test, iter_i, nb_classes)
return y_train_new, y_val_new, y_test_new
def prepare_generators(X_train, y_train_new, X_val, y_val_new, batch_size, epoch_size):
# Create sample generators
# Make a fixed validation set to avoid fluctuations in validation
train_gen = get_data_loader(X_train, y_train_new, batch_size,
extended_batch_sampler=True)
val_gen = get_data_loader(X_val, y_val_new, epoch_size,
extended_batch_sampler=True)
X_val_resamp, y_val_resamp = next(iter(val_gen))
return train_gen, X_val_resamp, y_val_resamp
def class_avg_tune_trainable(model, nb_classes, loss_op, optim_op, train, val, test,
epoch_size, nb_epochs, batch_size,
init_weight_path, checkpoint_weight_path, patience=5,
verbose=True):
""" Finetunes the given model using the F1 measure.
# Arguments:
model: Model to be finetuned.
nb_classes: Number of classes in the given dataset.
train: Training data, given as a tuple of (inputs, outputs)
val: Validation data, given as a tuple of (inputs, outputs)
test: Testing data, given as a tuple of (inputs, outputs)
epoch_size: Number of samples in an epoch.
nb_epochs: Number of epochs.
batch_size: Batch size.
init_weight_path: Filepath where weights will be initially saved before
training each class. This file will be rewritten by the function.
checkpoint_weight_path: Filepath where weights will be checkpointed to
during training. This file will be rewritten by the function.
verbose: Verbosity flag.
# Returns:
F1 score of the trained model
"""
total_f1 = 0
nb_iter = nb_classes if nb_classes > 2 else 1
# Unpack args
X_train, y_train = train
X_val, y_val = val
X_test, y_test = test
# Save and reload initial weights after running for
# each class to avoid learning across classes
torch.save(model.state_dict(), init_weight_path)
for i in range(nb_iter):
if verbose:
print('Iteration number {}/{}'.format(i+1, nb_iter))
model.load_state_dict(torch.load(init_weight_path))
y_train_new, y_val_new, y_test_new = prepare_labels(y_train, y_val,
y_test, i, nb_classes)
train_gen, X_val_resamp, y_val_resamp = \
prepare_generators(X_train, y_train_new, X_val, y_val_new,
batch_size, epoch_size)
if verbose:
print("Training..")
fit_model(model, loss_op, optim_op, train_gen, [(X_val_resamp, y_val_resamp)],
nb_epochs, checkpoint_weight_path, patience, verbose=0)
# Reload the best weights found to avoid overfitting
# Wait a bit to allow proper closing of weights file
sleep(1)
model.load_state_dict(torch.load(checkpoint_weight_path))
# Evaluate
y_pred_val = model(X_val).cpu().numpy()
y_pred_test = model(X_test).cpu().numpy()
f1_test, best_t = find_f1_threshold(y_val_new, y_pred_val,
y_test_new, y_pred_test)
if verbose:
print('f1_test: {}'.format(f1_test))
print('best_t: {}'.format(best_t))
total_f1 += f1_test
return total_f1 / nb_iter
def class_avg_chainthaw(model, nb_classes, loss_op, train, val, test, batch_size,
epoch_size, nb_epochs, checkpoint_weight_path,
f1_init_weight_path, patience=5,
initial_lr=0.001, next_lr=0.0001, verbose=True):
""" Finetunes given model using chain-thaw and evaluates using F1.
For a dataset with multiple classes, the model is trained once for
each class, relabeling those classes into a binary classification task.
The result is an average of all F1 scores for each class.
# Arguments:
model: Model to be finetuned.
nb_classes: Number of classes in the given dataset.
train: Training data, given as a tuple of (inputs, outputs)
val: Validation data, given as a tuple of (inputs, outputs)
test: Testing data, given as a tuple of (inputs, outputs)
batch_size: Batch size.
loss: Loss function to be used during training.
epoch_size: Number of samples in an epoch.
nb_epochs: Number of epochs.
checkpoint_weight_path: Filepath where weights will be checkpointed to
during training. This file will be rewritten by the function.
f1_init_weight_path: Filepath where weights will be saved to and
reloaded from before training each class. This ensures that
each class is trained independently. This file will be rewritten.
initial_lr: Initial learning rate. Will only be used for the first
training step (i.e. the softmax layer)
next_lr: Learning rate for every subsequent step.
seed: Random number generator seed.
verbose: Verbosity flag.
# Returns:
Averaged F1 score.
"""
# Unpack args
X_train, y_train = train
X_val, y_val = val
X_test, y_test = test
total_f1 = 0
nb_iter = nb_classes if nb_classes > 2 else 1
torch.save(model.state_dict(), f1_init_weight_path)
for i in range(nb_iter):
if verbose:
print('Iteration number {}/{}'.format(i+1, nb_iter))
model.load_state_dict(torch.load(f1_init_weight_path))
y_train_new, y_val_new, y_test_new = prepare_labels(y_train, y_val,
y_test, i, nb_classes)
train_gen, X_val_resamp, y_val_resamp = \
prepare_generators(X_train, y_train_new, X_val, y_val_new,
batch_size, epoch_size)
if verbose:
print("Training..")
# Train using chain-thaw
train_by_chain_thaw(model=model, train_gen=train_gen,
val_gen=[(X_val_resamp, y_val_resamp)],
loss_op=loss_op, patience=patience,
nb_epochs=nb_epochs,
checkpoint_path=checkpoint_weight_path,
initial_lr=initial_lr, next_lr=next_lr,
verbose=verbose)
# Evaluate
y_pred_val = model(X_val).cpu().numpy()
y_pred_test = model(X_test).cpu().numpy()
f1_test, best_t = find_f1_threshold(y_val_new, y_pred_val,
y_test_new, y_pred_test)
if verbose:
print('f1_test: {}'.format(f1_test))
print('best_t: {}'.format(best_t))
total_f1 += f1_test
return total_f1 / nb_iter