Spaces:
Runtime error
Runtime error
File size: 14,032 Bytes
22d4f29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
# -*- coding: utf-8 -*-
""" Model definition functions and weight loading.
"""
from __future__ import print_function, division, unicode_literals
from os.path import exists
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence, PackedSequence
from torchmoji.lstm import LSTMHardSigmoid
from torchmoji.attlayer import Attention
from torchmoji.global_variables import NB_TOKENS, NB_EMOJI_CLASSES
def torchmoji_feature_encoding(weight_path, return_attention=False):
""" Loads the pretrained torchMoji model for extracting features
from the penultimate feature layer. In this way, it transforms
the text into its emotional encoding.
# Arguments:
weight_path: Path to model weights to be loaded.
return_attention: If true, output will include weight of each input token
used for the prediction
# Returns:
Pretrained model for encoding text into feature vectors.
"""
model = TorchMoji(nb_classes=None,
nb_tokens=NB_TOKENS,
feature_output=True,
return_attention=return_attention)
load_specific_weights(model, weight_path, exclude_names=['output_layer'])
return model
def torchmoji_emojis(weight_path, return_attention=False):
""" Loads the pretrained torchMoji model for extracting features
from the penultimate feature layer. In this way, it transforms
the text into its emotional encoding.
# Arguments:
weight_path: Path to model weights to be loaded.
return_attention: If true, output will include weight of each input token
used for the prediction
# Returns:
Pretrained model for encoding text into feature vectors.
"""
model = TorchMoji(nb_classes=NB_EMOJI_CLASSES,
nb_tokens=NB_TOKENS,
return_attention=return_attention)
model.load_state_dict(torch.load(weight_path))
return model
def torchmoji_transfer(nb_classes, weight_path=None, extend_embedding=0,
embed_dropout_rate=0.1, final_dropout_rate=0.5):
""" Loads the pretrained torchMoji model for finetuning/transfer learning.
Does not load weights for the softmax layer.
Note that if you are planning to use class average F1 for evaluation,
nb_classes should be set to 2 instead of the actual number of classes
in the dataset, since binary classification will be performed on each
class individually.
Note that for the 'new' method, weight_path should be left as None.
# Arguments:
nb_classes: Number of classes in the dataset.
weight_path: Path to model weights to be loaded.
extend_embedding: Number of tokens that have been added to the
vocabulary on top of NB_TOKENS. If this number is larger than 0,
the embedding layer's dimensions are adjusted accordingly, with the
additional weights being set to random values.
embed_dropout_rate: Dropout rate for the embedding layer.
final_dropout_rate: Dropout rate for the final Softmax layer.
# Returns:
Model with the given parameters.
"""
model = TorchMoji(nb_classes=nb_classes,
nb_tokens=NB_TOKENS + extend_embedding,
embed_dropout_rate=embed_dropout_rate,
final_dropout_rate=final_dropout_rate,
output_logits=True)
if weight_path is not None:
load_specific_weights(model, weight_path,
exclude_names=['output_layer'],
extend_embedding=extend_embedding)
return model
class TorchMoji(nn.Module):
def __init__(self, nb_classes, nb_tokens, feature_output=False, output_logits=False,
embed_dropout_rate=0, final_dropout_rate=0, return_attention=False):
"""
torchMoji model.
IMPORTANT: The model is loaded in evaluation mode by default (self.eval())
# Arguments:
nb_classes: Number of classes in the dataset.
nb_tokens: Number of tokens in the dataset (i.e. vocabulary size).
feature_output: If True the model returns the penultimate
feature vector rather than Softmax probabilities
(defaults to False).
output_logits: If True the model returns logits rather than probabilities
(defaults to False).
embed_dropout_rate: Dropout rate for the embedding layer.
final_dropout_rate: Dropout rate for the final Softmax layer.
return_attention: If True the model also returns attention weights over the sentence
(defaults to False).
"""
super(TorchMoji, self).__init__()
embedding_dim = 256
hidden_size = 512
attention_size = 4 * hidden_size + embedding_dim
self.feature_output = feature_output
self.embed_dropout_rate = embed_dropout_rate
self.final_dropout_rate = final_dropout_rate
self.return_attention = return_attention
self.hidden_size = hidden_size
self.output_logits = output_logits
self.nb_classes = nb_classes
self.add_module('embed', nn.Embedding(nb_tokens, embedding_dim))
# dropout2D: embedding channels are dropped out instead of words
# many exampels in the datasets contain few words that losing one or more words can alter the emotions completely
self.add_module('embed_dropout', nn.Dropout2d(embed_dropout_rate))
self.add_module('lstm_0', LSTMHardSigmoid(embedding_dim, hidden_size, batch_first=True, bidirectional=True))
self.add_module('lstm_1', LSTMHardSigmoid(hidden_size*2, hidden_size, batch_first=True, bidirectional=True))
self.add_module('attention_layer', Attention(attention_size=attention_size, return_attention=return_attention))
if not feature_output:
self.add_module('final_dropout', nn.Dropout(final_dropout_rate))
if output_logits:
self.add_module('output_layer', nn.Sequential(nn.Linear(attention_size, nb_classes if self.nb_classes > 2 else 1)))
else:
self.add_module('output_layer', nn.Sequential(nn.Linear(attention_size, nb_classes if self.nb_classes > 2 else 1),
nn.Softmax() if self.nb_classes > 2 else nn.Sigmoid()))
self.init_weights()
# Put model in evaluation mode by default
self.eval()
def init_weights(self):
"""
Here we reproduce Keras default initialization weights for consistency with Keras version
"""
ih = (param.data for name, param in self.named_parameters() if 'weight_ih' in name)
hh = (param.data for name, param in self.named_parameters() if 'weight_hh' in name)
b = (param.data for name, param in self.named_parameters() if 'bias' in name)
nn.init.uniform(self.embed.weight.data, a=-0.5, b=0.5)
for t in ih:
nn.init.xavier_uniform(t)
for t in hh:
nn.init.orthogonal(t)
for t in b:
nn.init.constant(t, 0)
if not self.feature_output:
nn.init.xavier_uniform(self.output_layer[0].weight.data)
def forward(self, input_seqs):
""" Forward pass.
# Arguments:
input_seqs: Can be one of Numpy array, Torch.LongTensor, Torch.Variable, Torch.PackedSequence.
# Return:
Same format as input format (except for PackedSequence returned as Variable).
"""
# Check if we have Torch.LongTensor inputs or not Torch.Variable (assume Numpy array in this case), take note to return same format
return_numpy = False
return_tensor = False
if isinstance(input_seqs, (torch.LongTensor, torch.cuda.LongTensor)):
input_seqs = Variable(input_seqs)
return_tensor = True
elif not isinstance(input_seqs, Variable):
input_seqs = Variable(torch.from_numpy(input_seqs.astype('int64')).long())
return_numpy = True
# If we don't have a packed inputs, let's pack it
reorder_output = False
if not isinstance(input_seqs, PackedSequence):
ho = self.lstm_0.weight_hh_l0.data.new(2, input_seqs.size()[0], self.hidden_size).zero_()
co = self.lstm_0.weight_hh_l0.data.new(2, input_seqs.size()[0], self.hidden_size).zero_()
# Reorder batch by sequence length
input_lengths = torch.LongTensor([torch.max(input_seqs[i, :].data.nonzero()) + 1 for i in range(input_seqs.size()[0])])
input_lengths, perm_idx = input_lengths.sort(0, descending=True)
input_seqs = input_seqs[perm_idx][:, :input_lengths.max()]
# Pack sequence and work on data tensor to reduce embeddings/dropout computations
packed_input = pack_padded_sequence(input_seqs, input_lengths.cpu().numpy(), batch_first=True)
reorder_output = True
else:
ho = self.lstm_0.weight_hh_l0.data.data.new(2, input_seqs.size()[0], self.hidden_size).zero_()
co = self.lstm_0.weight_hh_l0.data.data.new(2, input_seqs.size()[0], self.hidden_size).zero_()
input_lengths = input_seqs.batch_sizes
packed_input = input_seqs
hidden = (Variable(ho, requires_grad=False), Variable(co, requires_grad=False))
# Embed with an activation function to bound the values of the embeddings
x = self.embed(packed_input.data)
x = nn.Tanh()(x)
# pyTorch 2D dropout2d operate on axis 1 which is fine for us
x = self.embed_dropout(x)
# Update packed sequence data for RNN
packed_input = PackedSequence(x, packed_input.batch_sizes)
# skip-connection from embedding to output eases gradient-flow and allows access to lower-level features
# ordering of the way the merge is done is important for consistency with the pretrained model
lstm_0_output, _ = self.lstm_0(packed_input, hidden)
lstm_1_output, _ = self.lstm_1(lstm_0_output, hidden)
# Update packed sequence data for attention layer
packed_input = PackedSequence(torch.cat((lstm_1_output.data,
lstm_0_output.data,
packed_input.data), dim=1),
packed_input.batch_sizes)
input_seqs, _ = pad_packed_sequence(packed_input, batch_first=True)
x, att_weights = self.attention_layer(input_seqs, input_lengths)
# output class probabilities or penultimate feature vector
if not self.feature_output:
x = self.final_dropout(x)
outputs = self.output_layer(x)
else:
outputs = x
# Reorder output if needed
if reorder_output:
reorered = Variable(outputs.data.new(outputs.size()))
reorered[perm_idx] = outputs
outputs = reorered
# Adapt return format if needed
if return_tensor:
outputs = outputs.data
if return_numpy:
outputs = outputs.data.numpy()
if self.return_attention:
return outputs, att_weights
else:
return outputs
def load_specific_weights(model, weight_path, exclude_names=[], extend_embedding=0, verbose=True):
""" Loads model weights from the given file path, excluding any
given layers.
# Arguments:
model: Model whose weights should be loaded.
weight_path: Path to file containing model weights.
exclude_names: List of layer names whose weights should not be loaded.
extend_embedding: Number of new words being added to vocabulary.
verbose: Verbosity flag.
# Raises:
ValueError if the file at weight_path does not exist.
"""
if not exists(weight_path):
raise ValueError('ERROR (load_weights): The weights file at {} does '
'not exist. Refer to the README for instructions.'
.format(weight_path))
if extend_embedding and 'embed' in exclude_names:
raise ValueError('ERROR (load_weights): Cannot extend a vocabulary '
'without loading the embedding weights.')
# Copy only weights from the temporary model that are wanted
# for the specific task (e.g. the Softmax is often ignored)
weights = torch.load(weight_path)
for key, weight in weights.items():
if any(excluded in key for excluded in exclude_names):
if verbose:
print('Ignoring weights for {}'.format(key))
continue
try:
model_w = model.state_dict()[key]
except KeyError:
raise KeyError("Weights had parameters {},".format(key)
+ " but could not find this parameters in model.")
if verbose:
print('Loading weights for {}'.format(key))
# extend embedding layer to allow new randomly initialized words
# if requested. Otherwise, just load the weights for the layer.
if 'embed' in key and extend_embedding > 0:
weight = torch.cat((weight, model_w[NB_TOKENS:, :]), dim=0)
if verbose:
print('Extended vocabulary for embedding layer ' +
'from {} to {} tokens.'.format(
NB_TOKENS, NB_TOKENS + extend_embedding))
try:
model_w.copy_(weight)
except:
print('While copying the weigths named {}, whose dimensions in the model are'
' {} and whose dimensions in the saved file are {}, ...'.format(
key, model_w.size(), weight.size()))
raise
|