Spaces:
Runtime error
Runtime error
johnpaulbin
commited on
Commit
•
38cf82b
1
Parent(s):
ed0424c
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,119 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
model = SetFitModel.from_pretrained("johnpaulbin/toxic-gte-small-3")
|
6 |
|
7 |
def inf(inpt):
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
12 |
else:
|
13 |
-
return "Toxic! " + str(
|
14 |
|
15 |
iface = gr.Interface(fn=inf, inputs="text", outputs="text")
|
16 |
iface.queue(concurrency_count=500).launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import asyncio
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch import nn
|
5 |
+
import os
|
6 |
+
os.environ['CURL_CA_BUNDLE'] = ''
|
7 |
|
8 |
+
app = Flask(__name__)
|
9 |
+
|
10 |
+
|
11 |
+
from sentence_transformers import SentenceTransformer
|
12 |
+
sentencemodel = SentenceTransformer('johnpaulbin/toxic-gte-small-3')
|
13 |
+
|
14 |
+
USE_GPU = False
|
15 |
+
|
16 |
+
|
17 |
+
""" Use torchMoji to predict emojis from a single text input
|
18 |
+
"""
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
import emoji, json
|
22 |
+
from torchmoji.global_variables import PRETRAINED_PATH, VOCAB_PATH
|
23 |
+
from torchmoji.sentence_tokenizer import SentenceTokenizer
|
24 |
+
from torchmoji.model_def import torchmoji_emojis
|
25 |
+
import torch
|
26 |
+
|
27 |
+
# Emoji map in emoji_overview.png
|
28 |
+
EMOJIS = ":joy: :unamused: :weary: :sob: :heart_eyes: \
|
29 |
+
:pensive: :ok_hand: :blush: :heart: :smirk: \
|
30 |
+
:grin: :notes: :flushed: :100: :sleeping: \
|
31 |
+
:relieved: :relaxed: :raised_hands: :two_hearts: :expressionless: \
|
32 |
+
:sweat_smile: :pray: :confused: :kissing_heart: :heartbeat: \
|
33 |
+
:neutral_face: :information_desk_person: :disappointed: :see_no_evil: :tired_face: \
|
34 |
+
:v: :sunglasses: :rage: :thumbsup: :cry: \
|
35 |
+
:sleepy: :yum: :triumph: :hand: :mask: \
|
36 |
+
:clap: :eyes: :gun: :persevere: :smiling_imp: \
|
37 |
+
:sweat: :broken_heart: :yellow_heart: :musical_note: :speak_no_evil: \
|
38 |
+
:wink: :skull: :confounded: :smile: :stuck_out_tongue_winking_eye: \
|
39 |
+
:angry: :no_good: :muscle: :facepunch: :purple_heart: \
|
40 |
+
:sparkling_heart: :blue_heart: :grimacing: :sparkles:".split(' ')
|
41 |
+
|
42 |
+
def top_elements(array, k):
|
43 |
+
ind = np.argpartition(array, -k)[-k:]
|
44 |
+
return ind[np.argsort(array[ind])][::-1]
|
45 |
+
|
46 |
+
|
47 |
+
with open("vocabulary.json", 'r') as f:
|
48 |
+
vocabulary = json.load(f)
|
49 |
+
|
50 |
+
st = SentenceTokenizer(vocabulary, 100)
|
51 |
+
|
52 |
+
emojimodel = torchmoji_emojis("pytorch_model.bin")
|
53 |
+
|
54 |
+
if USE_GPU:
|
55 |
+
emojimodel.to("cuda:0")
|
56 |
+
|
57 |
+
def deepmojify(sentence, top_n=5, prob_only=False):
|
58 |
+
list_emojis = []
|
59 |
+
def top_elements(array, k):
|
60 |
+
ind = np.argpartition(array, -k)[-k:]
|
61 |
+
return ind[np.argsort(array[ind])][::-1]
|
62 |
+
|
63 |
+
tokenized, _, _ = st.tokenize_sentences([sentence])
|
64 |
+
tokenized = np.array(tokenized).astype(int) # convert to float first
|
65 |
+
if USE_GPU:
|
66 |
+
tokenized = torch.tensor(tokenized).cuda() # then convert to PyTorch tensor
|
67 |
+
|
68 |
+
prob = emojimodel.forward(tokenized)[0]
|
69 |
+
if not USE_GPU:
|
70 |
+
prob = torch.tensor(prob)
|
71 |
+
if prob_only:
|
72 |
+
return prob
|
73 |
+
emoji_ids = top_elements(prob.cpu().numpy(), top_n)
|
74 |
+
emojis = map(lambda x: EMOJIS[x], emoji_ids)
|
75 |
+
list_emojis.append(emoji.emojize(f"{' '.join(emojis)}", language='alias'))
|
76 |
+
# returning the emojis as a list named as list_emojis
|
77 |
+
return list_emojis, prob
|
78 |
+
|
79 |
+
|
80 |
+
model = nn.Sequential(
|
81 |
+
nn.Linear(448, 300), # Increase the number of neurons
|
82 |
+
nn.ReLU(),
|
83 |
+
nn.BatchNorm1d(300), # Batch normalization
|
84 |
+
|
85 |
+
nn.Linear(300, 300), # Increase the number of neurons
|
86 |
+
nn.ReLU(),
|
87 |
+
nn.BatchNorm1d(300), # Batch normalization
|
88 |
+
|
89 |
+
nn.Linear(300, 200), # Increase the number of neurons
|
90 |
+
nn.ReLU(),
|
91 |
+
nn.BatchNorm1d(200), # Batch normalization
|
92 |
+
|
93 |
+
nn.Linear(200, 125), # Increase the number of neurons
|
94 |
+
nn.ReLU(),
|
95 |
+
nn.BatchNorm1d(125), # Batch normalization
|
96 |
+
|
97 |
+
nn.Linear(125, 2),
|
98 |
+
nn.Dropout(0.05) # Dropout
|
99 |
+
)
|
100 |
+
|
101 |
+
model.load_state_dict(torch.load("large.pth"))
|
102 |
+
model.eval()
|
103 |
|
|
|
104 |
|
105 |
def inf(inpt):
|
106 |
+
|
107 |
+
TEXT = inpt.lower()
|
108 |
+
probs = deepmojify(TEXT, prob_only=True)
|
109 |
+
embedding = sentencemodel.encode(TEXT, convert_to_tensor=True)
|
110 |
+
INPUT = torch.cat((probs, embedding))
|
111 |
+
output = F.softmax(model(INPUT.view(1, -1)), dim=1)
|
112 |
+
|
113 |
+
if output[0][0] > output[0][1]:
|
114 |
+
return "Not toxic " + str(output[0][0])
|
115 |
else:
|
116 |
+
return "Toxic! " + str(output[0][1])
|
117 |
|
118 |
iface = gr.Interface(fn=inf, inputs="text", outputs="text")
|
119 |
iface.queue(concurrency_count=500).launch()
|