Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import DPTFeatureExtractor, DPTForDepthEstimation | |
import torch | |
import numpy as np | |
from PIL import Image | |
import open3d as o3d | |
from pathlib import Path | |
from depth_viewer import depthviewer2html | |
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large") | |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") | |
def process_image(image_path): | |
image_path = Path(image_path) | |
image = Image.open(image_path) | |
# prepare image for the model | |
encoding = feature_extractor(image, return_tensors="pt") | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**encoding) | |
predicted_depth = outputs.predicted_depth | |
# interpolate to original size | |
prediction = torch.nn.functional.interpolate( | |
predicted_depth.unsqueeze(1), | |
size=image.size[::-1], | |
mode="bicubic", | |
align_corners=False, | |
).squeeze() | |
output = prediction.cpu().numpy() | |
depth = (output * 255 / np.max(output)).astype('uint8') | |
h = depthviewer2html(image,depth) | |
return [h] | |
title = "3d Visualization of Depth Maps Generated using MiDaS" | |
description = "Improved 3D interactive depth viewer using Three.js embedded in a Gradio app. For more details see the <a href='https://colab.research.google.com/drive/1l2l8U7Vhq9RnvV2tHyfhrXKNuHfmb4IP?usp=sharing'>Colab Notebook.</a>" | |
examples = [["examples/owl1.jpg"],['examples/marsattacks.jpg'],['examples/kitten.jpg']] | |
iface = gr.Interface(fn=process_image, | |
inputs=[gr.Image(type="filepath",label="Input Image")], | |
outputs=[gr.HTML(label='Depth Viewer',elem_id='depth-viewer')], | |
title=title, | |
description=description, | |
examples=examples, | |
allow_flagging="never", | |
cache_examples=False, | |
css='#depth-viewer: {height:300px;}') | |
iface.launch(debug=True, enable_queue=False) |