Spaces:
Configuration error
Configuration error
File size: 15,247 Bytes
2a3a041 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import nltk
import pickle
import argparse
from collections import Counter
import json
import os
from tqdm import *
import numpy as np
import re
class Vocabulary(object):
"""Simple vocabulary wrapper."""
def __init__(self):
self.word2idx = {}
self.idx2word = {}
self.idx = 0
def add_word(self, word, idx=None):
if idx is None:
if not word in self.word2idx:
self.word2idx[word] = self.idx
self.idx2word[self.idx] = word
self.idx += 1
return self.idx
else:
if not word in self.word2idx:
self.word2idx[word] = idx
if idx in self.idx2word.keys():
self.idx2word[idx].append(word)
else:
self.idx2word[idx] = [word]
return idx
def __call__(self, word):
if not word in self.word2idx:
return self.word2idx['<pad>']
return self.word2idx[word]
def __len__(self):
return len(self.idx2word)
def get_ingredient(det_ingr, replace_dict):
det_ingr_undrs = det_ingr['text'].lower()
det_ingr_undrs = ''.join(i for i in det_ingr_undrs if not i.isdigit())
for rep, char_list in replace_dict.items():
for c_ in char_list:
if c_ in det_ingr_undrs:
det_ingr_undrs = det_ingr_undrs.replace(c_, rep)
det_ingr_undrs = det_ingr_undrs.strip()
det_ingr_undrs = det_ingr_undrs.replace(' ', '_')
return det_ingr_undrs
def get_instruction(instruction, replace_dict, instruction_mode=True):
instruction = instruction.lower()
for rep, char_list in replace_dict.items():
for c_ in char_list:
if c_ in instruction:
instruction = instruction.replace(c_, rep)
instruction = instruction.strip()
# remove sentences starting with "1.", "2.", ... from the targets
if len(instruction) > 0 and instruction[0].isdigit() and instruction_mode:
instruction = ''
return instruction
def remove_plurals(counter_ingrs, ingr_clusters):
del_ingrs = []
for k, v in counter_ingrs.items():
if len(k) == 0:
del_ingrs.append(k)
continue
gotit = 0
if k[-2:] == 'es':
if k[:-2] in counter_ingrs.keys():
counter_ingrs[k[:-2]] += v
ingr_clusters[k[:-2]].extend(ingr_clusters[k])
del_ingrs.append(k)
gotit = 1
if k[-1] == 's' and gotit == 0:
if k[:-1] in counter_ingrs.keys():
counter_ingrs[k[:-1]] += v
ingr_clusters[k[:-1]].extend(ingr_clusters[k])
del_ingrs.append(k)
for item in del_ingrs:
del counter_ingrs[item]
del ingr_clusters[item]
return counter_ingrs, ingr_clusters
def cluster_ingredients(counter_ingrs):
mydict = dict()
mydict_ingrs = dict()
for k, v in counter_ingrs.items():
w1 = k.split('_')[-1]
w2 = k.split('_')[0]
lw = [w1, w2]
if len(k.split('_')) > 1:
w3 = k.split('_')[0] + '_' + k.split('_')[1]
w4 = k.split('_')[-2] + '_' + k.split('_')[-1]
lw = [w1, w2, w4, w3]
gotit = 0
for w in lw:
if w in counter_ingrs.keys():
# check if its parts are
parts = w.split('_')
if len(parts) > 0:
if parts[0] in counter_ingrs.keys():
w = parts[0]
elif parts[1] in counter_ingrs.keys():
w = parts[1]
if w in mydict.keys():
mydict[w] += v
mydict_ingrs[w].append(k)
else:
mydict[w] = v
mydict_ingrs[w] = [k]
gotit = 1
break
if gotit == 0:
mydict[k] = v
mydict_ingrs[k] = [k]
return mydict, mydict_ingrs
def update_counter(list_, counter_toks, istrain=False):
for sentence in list_:
tokens = nltk.tokenize.word_tokenize(sentence)
if istrain:
counter_toks.update(tokens)
def build_vocab_recipe1m(args):
print ("Loading data...")
dets = json.load(open(os.path.join(args.recipe1m_path, 'det_ingrs.json'), 'r'))
layer1 = json.load(open(os.path.join(args.recipe1m_path, 'layer1.json'), 'r'))
layer2 = json.load(open(os.path.join(args.recipe1m_path, 'layer2.json'), 'r'))
id2im = {}
for i, entry in enumerate(layer2):
id2im[entry['id']] = i
print("Loaded data.")
print("Found %d recipes in the dataset." % (len(layer1)))
replace_dict_ingrs = {'and': ['&', "'n"], '': ['%', ',', '.', '#', '[', ']', '!', '?']}
replace_dict_instrs = {'and': ['&', "'n"], '': ['#', '[', ']']}
idx2ind = {}
for i, entry in enumerate(dets):
idx2ind[entry['id']] = i
ingrs_file = args.save_path + 'allingrs_count.pkl'
instrs_file = args.save_path + 'allwords_count.pkl'
#####
# 1. Count words in dataset and clean
#####
if os.path.exists(ingrs_file) and os.path.exists(instrs_file) and not args.forcegen:
print ("loading pre-extracted word counters")
counter_ingrs = pickle.load(open(args.save_path + 'allingrs_count.pkl', 'rb'))
counter_toks = pickle.load(open(args.save_path + 'allwords_count.pkl', 'rb'))
else:
counter_toks = Counter()
counter_ingrs = Counter()
counter_ingrs_raw = Counter()
for i, entry in tqdm(enumerate(layer1)):
# get all instructions for this recipe
instrs = entry['instructions']
instrs_list = []
ingrs_list = []
# retrieve pre-detected ingredients for this entry
det_ingrs = dets[idx2ind[entry['id']]]['ingredients']
valid = dets[idx2ind[entry['id']]]['valid']
det_ingrs_filtered = []
for j, det_ingr in enumerate(det_ingrs):
if len(det_ingr) > 0 and valid[j]:
det_ingr_undrs = get_ingredient(det_ingr, replace_dict_ingrs)
det_ingrs_filtered.append(det_ingr_undrs)
ingrs_list.append(det_ingr_undrs)
# get raw text for instructions of this entry
acc_len = 0
for instr in instrs:
instr = instr['text']
instr = get_instruction(instr, replace_dict_instrs)
if len(instr) > 0:
instrs_list.append(instr)
acc_len += len(instr)
# discard recipes with too few or too many ingredients or instruction words
if len(ingrs_list) < args.minnumingrs or len(instrs_list) < args.minnuminstrs \
or len(instrs_list) >= args.maxnuminstrs or len(ingrs_list) >= args.maxnumingrs \
or acc_len < args.minnumwords:
continue
# tokenize sentences and update counter
update_counter(instrs_list, counter_toks, istrain=entry['partition'] == 'train')
title = nltk.tokenize.word_tokenize(entry['title'].lower())
if entry['partition'] == 'train':
counter_toks.update(title)
if entry['partition'] == 'train':
counter_ingrs.update(ingrs_list)
pickle.dump(counter_ingrs, open(args.save_path + 'allingrs_count.pkl', 'wb'))
pickle.dump(counter_toks, open(args.save_path + 'allwords_count.pkl', 'wb'))
pickle.dump(counter_ingrs_raw, open(args.save_path + 'allingrs_raw_count.pkl', 'wb'))
# manually add missing entries for better clustering
base_words = ['peppers', 'tomato', 'spinach_leaves', 'turkey_breast', 'lettuce_leaf',
'chicken_thighs', 'milk_powder', 'bread_crumbs', 'onion_flakes',
'red_pepper', 'pepper_flakes', 'juice_concentrate', 'cracker_crumbs', 'hot_chili',
'seasoning_mix', 'dill_weed', 'pepper_sauce', 'sprouts', 'cooking_spray', 'cheese_blend',
'basil_leaves', 'pineapple_chunks', 'marshmallow', 'chile_powder',
'cheese_blend', 'corn_kernels', 'tomato_sauce', 'chickens', 'cracker_crust',
'lemonade_concentrate', 'red_chili', 'mushroom_caps', 'mushroom_cap', 'breaded_chicken',
'frozen_pineapple', 'pineapple_chunks', 'seasoning_mix', 'seaweed', 'onion_flakes',
'bouillon_granules', 'lettuce_leaf', 'stuffing_mix', 'parsley_flakes', 'chicken_breast',
'basil_leaves', 'baguettes', 'green_tea', 'peanut_butter', 'green_onion', 'fresh_cilantro',
'breaded_chicken', 'hot_pepper', 'dried_lavender', 'white_chocolate',
'dill_weed', 'cake_mix', 'cheese_spread', 'turkey_breast', 'chucken_thighs', 'basil_leaves',
'mandarin_orange', 'laurel', 'cabbage_head', 'pistachio', 'cheese_dip',
'thyme_leave', 'boneless_pork', 'red_pepper', 'onion_dip', 'skinless_chicken', 'dark_chocolate',
'canned_corn', 'muffin', 'cracker_crust', 'bread_crumbs', 'frozen_broccoli',
'philadelphia', 'cracker_crust', 'chicken_breast']
for base_word in base_words:
if base_word not in counter_ingrs.keys():
counter_ingrs[base_word] = 1
counter_ingrs, cluster_ingrs = cluster_ingredients(counter_ingrs)
counter_ingrs, cluster_ingrs = remove_plurals(counter_ingrs, cluster_ingrs)
# If the word frequency is less than 'threshold', then the word is discarded.
words = [word for word, cnt in counter_toks.items() if cnt >= args.threshold_words]
ingrs = {word: cnt for word, cnt in counter_ingrs.items() if cnt >= args.threshold_ingrs}
# Recipe vocab
# Create a vocab wrapper and add some special tokens.
vocab_toks = Vocabulary()
vocab_toks.add_word('<start>')
vocab_toks.add_word('<end>')
vocab_toks.add_word('<eoi>')
# Add the words to the vocabulary.
for i, word in enumerate(words):
vocab_toks.add_word(word)
vocab_toks.add_word('<pad>')
# Ingredient vocab
# Create a vocab wrapper for ingredients
vocab_ingrs = Vocabulary()
idx = vocab_ingrs.add_word('<end>')
# this returns the next idx to add words to
# Add the ingredients to the vocabulary.
for k, _ in ingrs.items():
for ingr in cluster_ingrs[k]:
idx = vocab_ingrs.add_word(ingr, idx)
idx += 1
_ = vocab_ingrs.add_word('<pad>', idx)
print("Total ingr vocabulary size: {}".format(len(vocab_ingrs)))
print("Total token vocabulary size: {}".format(len(vocab_toks)))
dataset = {'train': [], 'val': [], 'test': []}
######
# 2. Tokenize and build dataset based on vocabularies.
######
for i, entry in tqdm(enumerate(layer1)):
# get all instructions for this recipe
instrs = entry['instructions']
instrs_list = []
ingrs_list = []
images_list = []
# retrieve pre-detected ingredients for this entry
det_ingrs = dets[idx2ind[entry['id']]]['ingredients']
valid = dets[idx2ind[entry['id']]]['valid']
labels = []
for j, det_ingr in enumerate(det_ingrs):
if len(det_ingr) > 0 and valid[j]:
det_ingr_undrs = get_ingredient(det_ingr, replace_dict_ingrs)
ingrs_list.append(det_ingr_undrs)
label_idx = vocab_ingrs(det_ingr_undrs)
if label_idx is not vocab_ingrs('<pad>') and label_idx not in labels:
labels.append(label_idx)
# get raw text for instructions of this entry
acc_len = 0
for instr in instrs:
instr = instr['text']
instr = get_instruction(instr, replace_dict_instrs)
if len(instr) > 0:
acc_len += len(instr)
instrs_list.append(instr)
# we discard recipes with too many or too few ingredients or instruction words
if len(labels) < args.minnumingrs or len(instrs_list) < args.minnuminstrs \
or len(instrs_list) >= args.maxnuminstrs or len(labels) >= args.maxnumingrs \
or acc_len < args.minnumwords:
continue
if entry['id'] in id2im.keys():
ims = layer2[id2im[entry['id']]]
# copy image paths for this recipe
for im in ims['images']:
images_list.append(im['id'])
# tokenize sentences
toks = []
for instr in instrs_list:
tokens = nltk.tokenize.word_tokenize(instr)
toks.append(tokens)
title = nltk.tokenize.word_tokenize(entry['title'].lower())
newentry = {'id': entry['id'], 'instructions': instrs_list, 'tokenized': toks,
'ingredients': ingrs_list, 'images': images_list, 'title': title}
dataset[entry['partition']].append(newentry)
print('Dataset size:')
for split in dataset.keys():
print(split, ':', len(dataset[split]))
return vocab_ingrs, vocab_toks, dataset
def main(args):
vocab_ingrs, vocab_toks, dataset = build_vocab_recipe1m(args)
with open(os.path.join(args.save_path, args.suff+'recipe1m_vocab_ingrs.pkl'), 'wb') as f:
pickle.dump(vocab_ingrs, f)
with open(os.path.join(args.save_path, args.suff+'recipe1m_vocab_toks.pkl'), 'wb') as f:
pickle.dump(vocab_toks, f)
for split in dataset.keys():
with open(os.path.join(args.save_path, args.suff+'recipe1m_' + split + '.pkl'), 'wb') as f:
pickle.dump(dataset[split], f)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--recipe1m_path', type=str,
default='path/to/recipe1m',
help='recipe1m path')
parser.add_argument('--save_path', type=str, default='../data/',
help='path for saving vocabulary wrapper')
parser.add_argument('--suff', type=str, default='')
parser.add_argument('--threshold_ingrs', type=int, default=10,
help='minimum ingr count threshold')
parser.add_argument('--threshold_words', type=int, default=10,
help='minimum word count threshold')
parser.add_argument('--maxnuminstrs', type=int, default=20,
help='max number of instructions (sentences)')
parser.add_argument('--maxnumingrs', type=int, default=20,
help='max number of ingredients')
parser.add_argument('--minnuminstrs', type=int, default=2,
help='max number of instructions (sentences)')
parser.add_argument('--minnumingrs', type=int, default=2,
help='max number of ingredients')
parser.add_argument('--minnumwords', type=int, default=20,
help='minimum number of characters in recipe')
parser.add_argument('--forcegen', dest='forcegen', action='store_true')
parser.set_defaults(forcegen=False)
args = parser.parse_args()
main(args)
|