File size: 10,077 Bytes
2a3a041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.

import torch
import torch.nn as nn
import random
import numpy as np
from src.modules.encoder import EncoderCNN, EncoderLabels
from src.modules.transformer_decoder import DecoderTransformer
from src.modules.multihead_attention import MultiheadAttention
from src.utils.metrics import softIoU, MaskedCrossEntropyCriterion
import pickle
import os
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')


def label2onehot(labels, pad_value):

    # input labels to one hot vector
    inp_ = torch.unsqueeze(labels, 2)
    one_hot = torch.FloatTensor(labels.size(0), labels.size(1), pad_value + 1).zero_().to(device)
    one_hot.scatter_(2, inp_, 1)
    one_hot, _ = one_hot.max(dim=1)
    # remove pad position
    one_hot = one_hot[:, :-1]
    # eos position is always 0
    one_hot[:, 0] = 0

    return one_hot


def mask_from_eos(ids, eos_value, mult_before=True):
    mask = torch.ones(ids.size()).to(device).byte()
    mask_aux = torch.ones(ids.size(0)).to(device).byte()

    # find eos in ingredient prediction
    for idx in range(ids.size(1)):
        # force mask to have 1s in the first position to avoid division by 0 when predictions start with eos
        if idx == 0:
            continue
        if mult_before:
            mask[:, idx] = mask[:, idx] * mask_aux
            mask_aux = mask_aux * (ids[:, idx] != eos_value)
        else:
            mask_aux = mask_aux * (ids[:, idx] != eos_value)
            mask[:, idx] = mask[:, idx] * mask_aux
    return mask


def get_model(args, ingr_vocab_size, instrs_vocab_size):

    # build ingredients embedding
    encoder_ingrs = EncoderLabels(args.embed_size, ingr_vocab_size,
                                  args.dropout_encoder, scale_grad=False).to(device)
    # build image model
    encoder_image = EncoderCNN(args.embed_size, args.dropout_encoder, args.image_model)

    decoder = DecoderTransformer(args.embed_size, instrs_vocab_size,
                                 dropout=args.dropout_decoder_r, seq_length=args.maxseqlen,
                                 num_instrs=args.maxnuminstrs,
                                 attention_nheads=args.n_att, num_layers=args.transf_layers,
                                 normalize_before=True,
                                 normalize_inputs=False,
                                 last_ln=False,
                                 scale_embed_grad=False)

    ingr_decoder = DecoderTransformer(args.embed_size, ingr_vocab_size, dropout=args.dropout_decoder_i,
                                      seq_length=args.maxnumlabels,
                                      num_instrs=1, attention_nheads=args.n_att_ingrs,
                                      pos_embeddings=False,
                                      num_layers=args.transf_layers_ingrs,
                                      learned=False,
                                      normalize_before=True,
                                      normalize_inputs=True,
                                      last_ln=True,
                                      scale_embed_grad=False)
    # recipe loss
    criterion = MaskedCrossEntropyCriterion(ignore_index=[instrs_vocab_size-1], reduce=False)

    # ingredients loss
    label_loss = nn.BCELoss(reduce=False)
    eos_loss = nn.BCELoss(reduce=False)

    model = InverseCookingModel(encoder_ingrs, decoder, ingr_decoder, encoder_image,
                                crit=criterion, crit_ingr=label_loss, crit_eos=eos_loss,
                                pad_value=ingr_vocab_size-1,
                                ingrs_only=args.ingrs_only, recipe_only=args.recipe_only,
                                label_smoothing=args.label_smoothing_ingr)

    return model


class InverseCookingModel(nn.Module):
    def __init__(self, ingredient_encoder, recipe_decoder, ingr_decoder, image_encoder,
                 crit=None, crit_ingr=None, crit_eos=None,
                 pad_value=0, ingrs_only=True,
                 recipe_only=False, label_smoothing=0.0):

        super(InverseCookingModel, self).__init__()

        self.ingredient_encoder = ingredient_encoder
        self.recipe_decoder = recipe_decoder
        self.image_encoder = image_encoder
        self.ingredient_decoder = ingr_decoder
        self.crit = crit
        self.crit_ingr = crit_ingr
        self.pad_value = pad_value
        self.ingrs_only = ingrs_only
        self.recipe_only = recipe_only
        self.crit_eos = crit_eos
        self.label_smoothing = label_smoothing

    def forward(self, img_inputs, captions, target_ingrs,
                sample=False, keep_cnn_gradients=False):

        if sample:
            return self.sample(img_inputs, greedy=True)

        targets = captions[:, 1:]
        targets = targets.contiguous().view(-1)

        img_features = self.image_encoder(img_inputs, keep_cnn_gradients)

        losses = {}
        target_one_hot = label2onehot(target_ingrs, self.pad_value)
        target_one_hot_smooth = label2onehot(target_ingrs, self.pad_value)

        # ingredient prediction
        if not self.recipe_only:
            target_one_hot_smooth[target_one_hot_smooth == 1] = (1-self.label_smoothing)
            target_one_hot_smooth[target_one_hot_smooth == 0] = self.label_smoothing / target_one_hot_smooth.size(-1)

            # decode ingredients with transformer
            # autoregressive mode for ingredient decoder
            ingr_ids, ingr_logits = self.ingredient_decoder.sample(None, None, greedy=True,
                                                                   temperature=1.0, img_features=img_features,
                                                                   first_token_value=0, replacement=False)

            ingr_logits = torch.nn.functional.softmax(ingr_logits, dim=-1)

            # find idxs for eos ingredient
            # eos probability is the one assigned to the first position of the softmax
            eos = ingr_logits[:, :, 0]
            target_eos = ((target_ingrs == 0) ^ (target_ingrs == self.pad_value))

            eos_pos = (target_ingrs == 0)
            eos_head = ((target_ingrs != self.pad_value) & (target_ingrs != 0))

            # select transformer steps to pool from
            mask_perminv = mask_from_eos(target_ingrs, eos_value=0, mult_before=False)
            ingr_probs = ingr_logits * mask_perminv.float().unsqueeze(-1)

            ingr_probs, _ = torch.max(ingr_probs, dim=1)

            # ignore predicted ingredients after eos in ground truth
            ingr_ids[mask_perminv == 0] = self.pad_value

            ingr_loss = self.crit_ingr(ingr_probs, target_one_hot_smooth)
            ingr_loss = torch.mean(ingr_loss, dim=-1)

            losses['ingr_loss'] = ingr_loss

            # cardinality penalty
            losses['card_penalty'] = torch.abs((ingr_probs*target_one_hot).sum(1) - target_one_hot.sum(1)) + \
                                     torch.abs((ingr_probs*(1-target_one_hot)).sum(1))

            eos_loss = self.crit_eos(eos, target_eos.float())

            mult = 1/2
            # eos loss is only computed for timesteps <= t_eos and equally penalizes 0s and 1s
            losses['eos_loss'] = mult*(eos_loss * eos_pos.float()).sum(1) / (eos_pos.float().sum(1) + 1e-6) + \
                                 mult*(eos_loss * eos_head.float()).sum(1) / (eos_head.float().sum(1) + 1e-6)
            # iou
            pred_one_hot = label2onehot(ingr_ids, self.pad_value)
            # iou sample during training is computed using the true eos position
            losses['iou'] = softIoU(pred_one_hot, target_one_hot)

        if self.ingrs_only:
            return losses
            
        # encode ingredients
        target_ingr_feats = self.ingredient_encoder(target_ingrs)
        target_ingr_mask = mask_from_eos(target_ingrs, eos_value=0, mult_before=False)

        target_ingr_mask = target_ingr_mask.float().unsqueeze(1)

        outputs, ids = self.recipe_decoder(target_ingr_feats, target_ingr_mask, captions, img_features)

        outputs = outputs[:, :-1, :].contiguous()
        outputs = outputs.view(outputs.size(0) * outputs.size(1), -1)

        loss = self.crit(outputs, targets)

        losses['recipe_loss'] = loss

        return losses

    def sample(self, img_inputs, greedy=True, temperature=1.0, beam=-1, true_ingrs=None):

        outputs = dict()

        img_features = self.image_encoder(img_inputs)

        if not self.recipe_only:
            ingr_ids, ingr_probs = self.ingredient_decoder.sample(None, None, greedy=True, temperature=temperature,
                                                                  beam=-1,
                                                                  img_features=img_features, first_token_value=0,
                                                                  replacement=False)

            # mask ingredients after finding eos
            sample_mask = mask_from_eos(ingr_ids, eos_value=0, mult_before=False)
            ingr_ids[sample_mask == 0] = self.pad_value

            outputs['ingr_ids'] = ingr_ids
            outputs['ingr_probs'] = ingr_probs.data

            mask = sample_mask
            input_mask = mask.float().unsqueeze(1)
            input_feats = self.ingredient_encoder(ingr_ids)

        if self.ingrs_only:
            return outputs

        # option during sampling to use the real ingredients and not the predicted ones to infer the recipe
        if true_ingrs is not None:
            input_mask = mask_from_eos(true_ingrs, eos_value=0, mult_before=False)
            true_ingrs[input_mask == 0] = self.pad_value
            input_feats = self.ingredient_encoder(true_ingrs)
            input_mask = input_mask.unsqueeze(1)

        ids, probs = self.recipe_decoder.sample(input_feats, input_mask, greedy, temperature, beam, img_features, 0,
                                                last_token_value=1)

        outputs['recipe_probs'] = probs.data
        outputs['recipe_ids'] = ids

        return outputs