Spaces:
Configuration error
Configuration error
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
import torch | |
import numpy as np | |
from args import get_parser | |
import pickle | |
import os | |
from torchvision import transforms | |
from build_vocab import Vocabulary | |
from model import get_model | |
from tqdm import tqdm | |
from data_loader import get_loader | |
import json | |
import sys | |
from model import mask_from_eos | |
import random | |
from utils.metrics import softIoU, update_error_types, compute_metrics | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
map_loc = None if torch.cuda.is_available() else 'cpu' | |
def compute_score(sampled_ids): | |
if 1 in sampled_ids: | |
cut = np.where(sampled_ids == 1)[0][0] | |
else: | |
cut = -1 | |
sampled_ids = sampled_ids[0:cut] | |
score = float(len(set(sampled_ids))) / float(len(sampled_ids)) | |
return score | |
def label2onehot(labels, pad_value): | |
# input labels to one hot vector | |
inp_ = torch.unsqueeze(labels, 2) | |
one_hot = torch.FloatTensor(labels.size(0), labels.size(1), pad_value + 1).zero_().to(device) | |
one_hot.scatter_(2, inp_, 1) | |
one_hot, _ = one_hot.max(dim=1) | |
# remove pad and eos position | |
one_hot = one_hot[:, 1:-1] | |
one_hot[:, 0] = 0 | |
return one_hot | |
def main(args): | |
where_to_save = os.path.join(args.save_dir, args.project_name, args.model_name) | |
checkpoints_dir = os.path.join(where_to_save, 'checkpoints') | |
logs_dir = os.path.join(where_to_save, 'logs') | |
if not args.log_term: | |
print ("Eval logs will be saved to:", os.path.join(logs_dir, 'eval.log')) | |
sys.stdout = open(os.path.join(logs_dir, 'eval.log'), 'w') | |
sys.stderr = open(os.path.join(logs_dir, 'eval.err'), 'w') | |
vars_to_replace = ['greedy', 'recipe_only', 'ingrs_only', 'temperature', 'batch_size', 'maxseqlen', | |
'get_perplexity', 'use_true_ingrs', 'eval_split', 'save_dir', 'aux_data_dir', | |
'recipe1m_dir', 'project_name', 'use_lmdb', 'beam'] | |
store_dict = {} | |
for var in vars_to_replace: | |
store_dict[var] = getattr(args, var) | |
args = pickle.load(open(os.path.join(checkpoints_dir, 'args.pkl'), 'rb')) | |
for var in vars_to_replace: | |
setattr(args, var, store_dict[var]) | |
print (args) | |
transforms_list = [] | |
transforms_list.append(transforms.Resize((args.crop_size))) | |
transforms_list.append(transforms.CenterCrop(args.crop_size)) | |
transforms_list.append(transforms.ToTensor()) | |
transforms_list.append(transforms.Normalize((0.485, 0.456, 0.406), | |
(0.229, 0.224, 0.225))) | |
# Image preprocessing | |
transform = transforms.Compose(transforms_list) | |
# data loader | |
data_dir = args.recipe1m_dir | |
data_loader, dataset = get_loader(data_dir, args.aux_data_dir, args.eval_split, | |
args.maxseqlen, args.maxnuminstrs, args.maxnumlabels, | |
args.maxnumims, transform, args.batch_size, | |
shuffle=False, num_workers=args.num_workers, | |
drop_last=False, max_num_samples=-1, | |
use_lmdb=args.use_lmdb, suff=args.suff) | |
ingr_vocab_size = dataset.get_ingrs_vocab_size() | |
instrs_vocab_size = dataset.get_instrs_vocab_size() | |
args.numgens = 1 | |
# Build the model | |
model = get_model(args, ingr_vocab_size, instrs_vocab_size) | |
model_path = os.path.join(args.save_dir, args.project_name, args.model_name, 'checkpoints', 'modelbest.ckpt') | |
# overwrite flags for inference | |
model.recipe_only = args.recipe_only | |
model.ingrs_only = args.ingrs_only | |
# Load the trained model parameters | |
model.load_state_dict(torch.load(model_path, map_location=map_loc)) | |
model.eval() | |
model = model.to(device) | |
results_dict = {'recipes': {}, 'ingrs': {}, 'ingr_iou': {}} | |
captions = {} | |
iou = [] | |
error_types = {'tp_i': 0, 'fp_i': 0, 'fn_i': 0, 'tn_i': 0, 'tp_all': 0, 'fp_all': 0, 'fn_all': 0} | |
perplexity_list = [] | |
n_rep, th = 0, 0.3 | |
for i, (img_inputs, true_caps_batch, ingr_gt, imgid, impath) in tqdm(enumerate(data_loader)): | |
ingr_gt = ingr_gt.to(device) | |
true_caps_batch = true_caps_batch.to(device) | |
true_caps_shift = true_caps_batch.clone()[:, 1:].contiguous() | |
img_inputs = img_inputs.to(device) | |
true_ingrs = ingr_gt if args.use_true_ingrs else None | |
for gens in range(args.numgens): | |
with torch.no_grad(): | |
if args.get_perplexity: | |
losses = model(img_inputs, true_caps_batch, ingr_gt, keep_cnn_gradients=False) | |
recipe_loss = losses['recipe_loss'] | |
recipe_loss = recipe_loss.view(true_caps_shift.size()) | |
non_pad_mask = true_caps_shift.ne(instrs_vocab_size - 1).float() | |
recipe_loss = torch.sum(recipe_loss*non_pad_mask, dim=-1) / torch.sum(non_pad_mask, dim=-1) | |
perplexity = torch.exp(recipe_loss) | |
perplexity = perplexity.detach().cpu().numpy().tolist() | |
perplexity_list.extend(perplexity) | |
else: | |
outputs = model.sample(img_inputs, args.greedy, args.temperature, args.beam, true_ingrs) | |
if not args.recipe_only: | |
fake_ingrs = outputs['ingr_ids'] | |
pred_one_hot = label2onehot(fake_ingrs, ingr_vocab_size - 1) | |
target_one_hot = label2onehot(ingr_gt, ingr_vocab_size - 1) | |
iou_item = torch.mean(softIoU(pred_one_hot, target_one_hot)).item() | |
iou.append(iou_item) | |
update_error_types(error_types, pred_one_hot, target_one_hot) | |
fake_ingrs = fake_ingrs.detach().cpu().numpy() | |
for ingr_idx, fake_ingr in enumerate(fake_ingrs): | |
iou_item = softIoU(pred_one_hot[ingr_idx].unsqueeze(0), | |
target_one_hot[ingr_idx].unsqueeze(0)).item() | |
results_dict['ingrs'][imgid[ingr_idx]] = [] | |
results_dict['ingrs'][imgid[ingr_idx]].append(fake_ingr) | |
results_dict['ingr_iou'][imgid[ingr_idx]] = iou_item | |
if not args.ingrs_only: | |
sampled_ids_batch = outputs['recipe_ids'] | |
sampled_ids_batch = sampled_ids_batch.cpu().detach().numpy() | |
for j, sampled_ids in enumerate(sampled_ids_batch): | |
score = compute_score(sampled_ids) | |
if score < th: | |
n_rep += 1 | |
if imgid[j] not in captions.keys(): | |
results_dict['recipes'][imgid[j]] = [] | |
results_dict['recipes'][imgid[j]].append(sampled_ids) | |
if args.get_perplexity: | |
print (len(perplexity_list)) | |
print (np.mean(perplexity_list)) | |
else: | |
if not args.recipe_only: | |
ret_metrics = {'accuracy': [], 'f1': [], 'jaccard': [], 'f1_ingredients': []} | |
compute_metrics(ret_metrics, error_types, ['accuracy', 'f1', 'jaccard', 'f1_ingredients'], | |
eps=1e-10, | |
weights=None) | |
for k, v in ret_metrics.items(): | |
print (k, np.mean(v)) | |
if args.greedy: | |
suff = 'greedy' | |
else: | |
if args.beam != -1: | |
suff = 'beam_'+str(args.beam) | |
else: | |
suff = 'temp_' + str(args.temperature) | |
results_file = os.path.join(args.save_dir, args.project_name, args.model_name, 'checkpoints', | |
args.eval_split + '_' + suff + '_gencaps.pkl') | |
print (results_file) | |
pickle.dump(results_dict, open(results_file, 'wb')) | |
print ("Number of samples with excessive repetitions:", n_rep) | |
if __name__ == '__main__': | |
args = get_parser() | |
torch.manual_seed(1234) | |
torch.cuda.manual_seed(1234) | |
random.seed(1234) | |
np.random.seed(1234) | |
main(args) | |