recipedia / src /sample.py
johnsonhung
init
2a3a041
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
import numpy as np
from args import get_parser
import pickle
import os
from torchvision import transforms
from build_vocab import Vocabulary
from model import get_model
from tqdm import tqdm
from data_loader import get_loader
import json
import sys
from model import mask_from_eos
import random
from utils.metrics import softIoU, update_error_types, compute_metrics
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
map_loc = None if torch.cuda.is_available() else 'cpu'
def compute_score(sampled_ids):
if 1 in sampled_ids:
cut = np.where(sampled_ids == 1)[0][0]
else:
cut = -1
sampled_ids = sampled_ids[0:cut]
score = float(len(set(sampled_ids))) / float(len(sampled_ids))
return score
def label2onehot(labels, pad_value):
# input labels to one hot vector
inp_ = torch.unsqueeze(labels, 2)
one_hot = torch.FloatTensor(labels.size(0), labels.size(1), pad_value + 1).zero_().to(device)
one_hot.scatter_(2, inp_, 1)
one_hot, _ = one_hot.max(dim=1)
# remove pad and eos position
one_hot = one_hot[:, 1:-1]
one_hot[:, 0] = 0
return one_hot
def main(args):
where_to_save = os.path.join(args.save_dir, args.project_name, args.model_name)
checkpoints_dir = os.path.join(where_to_save, 'checkpoints')
logs_dir = os.path.join(where_to_save, 'logs')
if not args.log_term:
print ("Eval logs will be saved to:", os.path.join(logs_dir, 'eval.log'))
sys.stdout = open(os.path.join(logs_dir, 'eval.log'), 'w')
sys.stderr = open(os.path.join(logs_dir, 'eval.err'), 'w')
vars_to_replace = ['greedy', 'recipe_only', 'ingrs_only', 'temperature', 'batch_size', 'maxseqlen',
'get_perplexity', 'use_true_ingrs', 'eval_split', 'save_dir', 'aux_data_dir',
'recipe1m_dir', 'project_name', 'use_lmdb', 'beam']
store_dict = {}
for var in vars_to_replace:
store_dict[var] = getattr(args, var)
args = pickle.load(open(os.path.join(checkpoints_dir, 'args.pkl'), 'rb'))
for var in vars_to_replace:
setattr(args, var, store_dict[var])
print (args)
transforms_list = []
transforms_list.append(transforms.Resize((args.crop_size)))
transforms_list.append(transforms.CenterCrop(args.crop_size))
transforms_list.append(transforms.ToTensor())
transforms_list.append(transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225)))
# Image preprocessing
transform = transforms.Compose(transforms_list)
# data loader
data_dir = args.recipe1m_dir
data_loader, dataset = get_loader(data_dir, args.aux_data_dir, args.eval_split,
args.maxseqlen, args.maxnuminstrs, args.maxnumlabels,
args.maxnumims, transform, args.batch_size,
shuffle=False, num_workers=args.num_workers,
drop_last=False, max_num_samples=-1,
use_lmdb=args.use_lmdb, suff=args.suff)
ingr_vocab_size = dataset.get_ingrs_vocab_size()
instrs_vocab_size = dataset.get_instrs_vocab_size()
args.numgens = 1
# Build the model
model = get_model(args, ingr_vocab_size, instrs_vocab_size)
model_path = os.path.join(args.save_dir, args.project_name, args.model_name, 'checkpoints', 'modelbest.ckpt')
# overwrite flags for inference
model.recipe_only = args.recipe_only
model.ingrs_only = args.ingrs_only
# Load the trained model parameters
model.load_state_dict(torch.load(model_path, map_location=map_loc))
model.eval()
model = model.to(device)
results_dict = {'recipes': {}, 'ingrs': {}, 'ingr_iou': {}}
captions = {}
iou = []
error_types = {'tp_i': 0, 'fp_i': 0, 'fn_i': 0, 'tn_i': 0, 'tp_all': 0, 'fp_all': 0, 'fn_all': 0}
perplexity_list = []
n_rep, th = 0, 0.3
for i, (img_inputs, true_caps_batch, ingr_gt, imgid, impath) in tqdm(enumerate(data_loader)):
ingr_gt = ingr_gt.to(device)
true_caps_batch = true_caps_batch.to(device)
true_caps_shift = true_caps_batch.clone()[:, 1:].contiguous()
img_inputs = img_inputs.to(device)
true_ingrs = ingr_gt if args.use_true_ingrs else None
for gens in range(args.numgens):
with torch.no_grad():
if args.get_perplexity:
losses = model(img_inputs, true_caps_batch, ingr_gt, keep_cnn_gradients=False)
recipe_loss = losses['recipe_loss']
recipe_loss = recipe_loss.view(true_caps_shift.size())
non_pad_mask = true_caps_shift.ne(instrs_vocab_size - 1).float()
recipe_loss = torch.sum(recipe_loss*non_pad_mask, dim=-1) / torch.sum(non_pad_mask, dim=-1)
perplexity = torch.exp(recipe_loss)
perplexity = perplexity.detach().cpu().numpy().tolist()
perplexity_list.extend(perplexity)
else:
outputs = model.sample(img_inputs, args.greedy, args.temperature, args.beam, true_ingrs)
if not args.recipe_only:
fake_ingrs = outputs['ingr_ids']
pred_one_hot = label2onehot(fake_ingrs, ingr_vocab_size - 1)
target_one_hot = label2onehot(ingr_gt, ingr_vocab_size - 1)
iou_item = torch.mean(softIoU(pred_one_hot, target_one_hot)).item()
iou.append(iou_item)
update_error_types(error_types, pred_one_hot, target_one_hot)
fake_ingrs = fake_ingrs.detach().cpu().numpy()
for ingr_idx, fake_ingr in enumerate(fake_ingrs):
iou_item = softIoU(pred_one_hot[ingr_idx].unsqueeze(0),
target_one_hot[ingr_idx].unsqueeze(0)).item()
results_dict['ingrs'][imgid[ingr_idx]] = []
results_dict['ingrs'][imgid[ingr_idx]].append(fake_ingr)
results_dict['ingr_iou'][imgid[ingr_idx]] = iou_item
if not args.ingrs_only:
sampled_ids_batch = outputs['recipe_ids']
sampled_ids_batch = sampled_ids_batch.cpu().detach().numpy()
for j, sampled_ids in enumerate(sampled_ids_batch):
score = compute_score(sampled_ids)
if score < th:
n_rep += 1
if imgid[j] not in captions.keys():
results_dict['recipes'][imgid[j]] = []
results_dict['recipes'][imgid[j]].append(sampled_ids)
if args.get_perplexity:
print (len(perplexity_list))
print (np.mean(perplexity_list))
else:
if not args.recipe_only:
ret_metrics = {'accuracy': [], 'f1': [], 'jaccard': [], 'f1_ingredients': []}
compute_metrics(ret_metrics, error_types, ['accuracy', 'f1', 'jaccard', 'f1_ingredients'],
eps=1e-10,
weights=None)
for k, v in ret_metrics.items():
print (k, np.mean(v))
if args.greedy:
suff = 'greedy'
else:
if args.beam != -1:
suff = 'beam_'+str(args.beam)
else:
suff = 'temp_' + str(args.temperature)
results_file = os.path.join(args.save_dir, args.project_name, args.model_name, 'checkpoints',
args.eval_split + '_' + suff + '_gencaps.pkl')
print (results_file)
pickle.dump(results_dict, open(results_file, 'wb'))
print ("Number of samples with excessive repetitions:", n_rep)
if __name__ == '__main__':
args = get_parser()
torch.manual_seed(1234)
torch.cuda.manual_seed(1234)
random.seed(1234)
np.random.seed(1234)
main(args)