recipedia / src /train.py
johnsonhung
init
2a3a041
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
from args import get_parser
import torch
import torch.nn as nn
import torch.autograd as autograd
import numpy as np
import os
import random
import pickle
from data_loader import get_loader
from build_vocab import Vocabulary
from model import get_model
from torchvision import transforms
import sys
import json
import time
import torch.backends.cudnn as cudnn
from utils.tb_visualizer import Visualizer
from model import mask_from_eos, label2onehot
from utils.metrics import softIoU, compute_metrics, update_error_types
import random
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
map_loc = None if torch.cuda.is_available() else 'cpu'
def merge_models(args, model, ingr_vocab_size, instrs_vocab_size):
load_args = pickle.load(open(os.path.join(args.save_dir, args.project_name,
args.transfer_from, 'checkpoints/args.pkl'), 'rb'))
model_ingrs = get_model(load_args, ingr_vocab_size, instrs_vocab_size)
model_path = os.path.join(args.save_dir, args.project_name, args.transfer_from, 'checkpoints', 'modelbest.ckpt')
# Load the trained model parameters
model_ingrs.load_state_dict(torch.load(model_path, map_location=map_loc))
model.ingredient_decoder = model_ingrs.ingredient_decoder
args.transf_layers_ingrs = load_args.transf_layers_ingrs
args.n_att_ingrs = load_args.n_att_ingrs
return args, model
def save_model(model, optimizer, checkpoints_dir, suff=''):
if torch.cuda.device_count() > 1:
torch.save(model.module.state_dict(), os.path.join(
checkpoints_dir, 'model' + suff + '.ckpt'))
else:
torch.save(model.state_dict(), os.path.join(
checkpoints_dir, 'model' + suff + '.ckpt'))
torch.save(optimizer.state_dict(), os.path.join(
checkpoints_dir, 'optim' + suff + '.ckpt'))
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def set_lr(optimizer, decay_factor):
for group in optimizer.param_groups:
group['lr'] = group['lr']*decay_factor
def make_dir(d):
if not os.path.exists(d):
os.makedirs(d)
def main(args):
# Create model directory & other aux folders for logging
where_to_save = os.path.join(args.save_dir, args.project_name, args.model_name)
checkpoints_dir = os.path.join(where_to_save, 'checkpoints')
logs_dir = os.path.join(where_to_save, 'logs')
tb_logs = os.path.join(args.save_dir, args.project_name, 'tb_logs', args.model_name)
make_dir(where_to_save)
make_dir(logs_dir)
make_dir(checkpoints_dir)
make_dir(tb_logs)
if args.tensorboard:
logger = Visualizer(tb_logs, name='visual_results')
# check if we want to resume from last checkpoint of current model
if args.resume:
args = pickle.load(open(os.path.join(checkpoints_dir, 'args.pkl'), 'rb'))
args.resume = True
# logs to disk
if not args.log_term:
print ("Training logs will be saved to:", os.path.join(logs_dir, 'train.log'))
sys.stdout = open(os.path.join(logs_dir, 'train.log'), 'w')
sys.stderr = open(os.path.join(logs_dir, 'train.err'), 'w')
print(args)
pickle.dump(args, open(os.path.join(checkpoints_dir, 'args.pkl'), 'wb'))
# patience init
curr_pat = 0
# Build data loader
data_loaders = {}
datasets = {}
data_dir = args.recipe1m_dir
for split in ['train', 'val']:
transforms_list = [transforms.Resize((args.image_size))]
if split == 'train':
# Image preprocessing, normalization for the pretrained resnet
transforms_list.append(transforms.RandomHorizontalFlip())
transforms_list.append(transforms.RandomAffine(degrees=10, translate=(0.1, 0.1)))
transforms_list.append(transforms.RandomCrop(args.crop_size))
else:
transforms_list.append(transforms.CenterCrop(args.crop_size))
transforms_list.append(transforms.ToTensor())
transforms_list.append(transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225)))
transform = transforms.Compose(transforms_list)
max_num_samples = max(args.max_eval, args.batch_size) if split == 'val' else -1
data_loaders[split], datasets[split] = get_loader(data_dir, args.aux_data_dir, split,
args.maxseqlen,
args.maxnuminstrs,
args.maxnumlabels,
args.maxnumims,
transform, args.batch_size,
shuffle=split == 'train', num_workers=args.num_workers,
drop_last=True,
max_num_samples=max_num_samples,
use_lmdb=args.use_lmdb,
suff=args.suff)
ingr_vocab_size = datasets[split].get_ingrs_vocab_size()
instrs_vocab_size = datasets[split].get_instrs_vocab_size()
# Build the model
model = get_model(args, ingr_vocab_size, instrs_vocab_size)
keep_cnn_gradients = False
decay_factor = 1.0
# add model parameters
if args.ingrs_only:
params = list(model.ingredient_decoder.parameters())
elif args.recipe_only:
params = list(model.recipe_decoder.parameters()) + list(model.ingredient_encoder.parameters())
else:
params = list(model.recipe_decoder.parameters()) + list(model.ingredient_decoder.parameters()) \
+ list(model.ingredient_encoder.parameters())
# only train the linear layer in the encoder if we are not transfering from another model
if args.transfer_from == '':
params += list(model.image_encoder.linear.parameters())
params_cnn = list(model.image_encoder.resnet.parameters())
print ("CNN params:", sum(p.numel() for p in params_cnn if p.requires_grad))
print ("decoder params:", sum(p.numel() for p in params if p.requires_grad))
# start optimizing cnn from the beginning
if params_cnn is not None and args.finetune_after == 0:
optimizer = torch.optim.Adam([{'params': params}, {'params': params_cnn,
'lr': args.learning_rate*args.scale_learning_rate_cnn}],
lr=args.learning_rate, weight_decay=args.weight_decay)
keep_cnn_gradients = True
print ("Fine tuning resnet")
else:
optimizer = torch.optim.Adam(params, lr=args.learning_rate)
if args.resume:
model_path = os.path.join(args.save_dir, args.project_name, args.model_name, 'checkpoints', 'model.ckpt')
optim_path = os.path.join(args.save_dir, args.project_name, args.model_name, 'checkpoints', 'optim.ckpt')
optimizer.load_state_dict(torch.load(optim_path, map_location=map_loc))
for state in optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.to(device)
model.load_state_dict(torch.load(model_path, map_location=map_loc))
if args.transfer_from != '':
# loads CNN encoder from transfer_from model
model_path = os.path.join(args.save_dir, args.project_name, args.transfer_from, 'checkpoints', 'modelbest.ckpt')
pretrained_dict = torch.load(model_path, map_location=map_loc)
pretrained_dict = {k: v for k, v in pretrained_dict.items() if 'encoder' in k}
model.load_state_dict(pretrained_dict, strict=False)
args, model = merge_models(args, model, ingr_vocab_size, instrs_vocab_size)
if device != 'cpu' and torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
model = model.to(device)
cudnn.benchmark = True
if not hasattr(args, 'current_epoch'):
args.current_epoch = 0
es_best = 10000 if args.es_metric == 'loss' else 0
# Train the model
start = args.current_epoch
for epoch in range(start, args.num_epochs):
# save current epoch for resuming
if args.tensorboard:
logger.reset()
args.current_epoch = epoch
# increase / decrase values for moving params
if args.decay_lr:
frac = epoch // args.lr_decay_every
decay_factor = args.lr_decay_rate ** frac
new_lr = args.learning_rate*decay_factor
print ('Epoch %d. lr: %.5f'%(epoch, new_lr))
set_lr(optimizer, decay_factor)
if args.finetune_after != -1 and args.finetune_after < epoch \
and not keep_cnn_gradients and params_cnn is not None:
print("Starting to fine tune CNN")
# start with learning rates as they were (if decayed during training)
optimizer = torch.optim.Adam([{'params': params},
{'params': params_cnn,
'lr': decay_factor*args.learning_rate*args.scale_learning_rate_cnn}],
lr=decay_factor*args.learning_rate)
keep_cnn_gradients = True
for split in ['train', 'val']:
if split == 'train':
model.train()
else:
model.eval()
total_step = len(data_loaders[split])
loader = iter(data_loaders[split])
total_loss_dict = {'recipe_loss': [], 'ingr_loss': [],
'eos_loss': [], 'loss': [],
'iou': [], 'perplexity': [], 'iou_sample': [],
'f1': [],
'card_penalty': []}
error_types = {'tp_i': 0, 'fp_i': 0, 'fn_i': 0, 'tn_i': 0,
'tp_all': 0, 'fp_all': 0, 'fn_all': 0}
torch.cuda.synchronize()
start = time.time()
for i in range(total_step):
img_inputs, captions, ingr_gt, img_ids, paths = loader.next()
ingr_gt = ingr_gt.to(device)
img_inputs = img_inputs.to(device)
captions = captions.to(device)
true_caps_batch = captions.clone()[:, 1:].contiguous()
loss_dict = {}
if split == 'val':
with torch.no_grad():
losses = model(img_inputs, captions, ingr_gt)
if not args.recipe_only:
outputs = model(img_inputs, captions, ingr_gt, sample=True)
ingr_ids_greedy = outputs['ingr_ids']
mask = mask_from_eos(ingr_ids_greedy, eos_value=0, mult_before=False)
ingr_ids_greedy[mask == 0] = ingr_vocab_size-1
pred_one_hot = label2onehot(ingr_ids_greedy, ingr_vocab_size-1)
target_one_hot = label2onehot(ingr_gt, ingr_vocab_size-1)
iou_sample = softIoU(pred_one_hot, target_one_hot)
iou_sample = iou_sample.sum() / (torch.nonzero(iou_sample.data).size(0) + 1e-6)
loss_dict['iou_sample'] = iou_sample.item()
update_error_types(error_types, pred_one_hot, target_one_hot)
del outputs, pred_one_hot, target_one_hot, iou_sample
else:
losses = model(img_inputs, captions, ingr_gt,
keep_cnn_gradients=keep_cnn_gradients)
if not args.ingrs_only:
recipe_loss = losses['recipe_loss']
recipe_loss = recipe_loss.view(true_caps_batch.size())
non_pad_mask = true_caps_batch.ne(instrs_vocab_size - 1).float()
recipe_loss = torch.sum(recipe_loss*non_pad_mask, dim=-1) / torch.sum(non_pad_mask, dim=-1)
perplexity = torch.exp(recipe_loss)
recipe_loss = recipe_loss.mean()
perplexity = perplexity.mean()
loss_dict['recipe_loss'] = recipe_loss.item()
loss_dict['perplexity'] = perplexity.item()
else:
recipe_loss = 0
if not args.recipe_only:
ingr_loss = losses['ingr_loss']
ingr_loss = ingr_loss.mean()
loss_dict['ingr_loss'] = ingr_loss.item()
eos_loss = losses['eos_loss']
eos_loss = eos_loss.mean()
loss_dict['eos_loss'] = eos_loss.item()
iou_seq = losses['iou']
iou_seq = iou_seq.mean()
loss_dict['iou'] = iou_seq.item()
card_penalty = losses['card_penalty'].mean()
loss_dict['card_penalty'] = card_penalty.item()
else:
ingr_loss, eos_loss, card_penalty = 0, 0, 0
loss = args.loss_weight[0] * recipe_loss + args.loss_weight[1] * ingr_loss \
+ args.loss_weight[2]*eos_loss + args.loss_weight[3]*card_penalty
loss_dict['loss'] = loss.item()
for key in loss_dict.keys():
total_loss_dict[key].append(loss_dict[key])
if split == 'train':
model.zero_grad()
loss.backward()
optimizer.step()
# Print log info
if args.log_step != -1 and i % args.log_step == 0:
elapsed_time = time.time()-start
lossesstr = ""
for k in total_loss_dict.keys():
if len(total_loss_dict[k]) == 0:
continue
this_one = "%s: %.4f" % (k, np.mean(total_loss_dict[k][-args.log_step:]))
lossesstr += this_one + ', '
# this only displays nll loss on captions, the rest of losses will be in tensorboard logs
strtoprint = 'Split: %s, Epoch [%d/%d], Step [%d/%d], Losses: %sTime: %.4f' % (split, epoch,
args.num_epochs, i,
total_step,
lossesstr,
elapsed_time)
print(strtoprint)
if args.tensorboard:
# logger.histo_summary(model=model, step=total_step * epoch + i)
logger.scalar_summary(mode=split+'_iter', epoch=total_step*epoch+i,
**{k: np.mean(v[-args.log_step:]) for k, v in total_loss_dict.items() if v})
torch.cuda.synchronize()
start = time.time()
del loss, losses, captions, img_inputs
if split == 'val' and not args.recipe_only:
ret_metrics = {'accuracy': [], 'f1': [], 'jaccard': [], 'f1_ingredients': [], 'dice': []}
compute_metrics(ret_metrics, error_types,
['accuracy', 'f1', 'jaccard', 'f1_ingredients', 'dice'], eps=1e-10,
weights=None)
total_loss_dict['f1'] = ret_metrics['f1']
if args.tensorboard:
# 1. Log scalar values (scalar summary)
logger.scalar_summary(mode=split,
epoch=epoch,
**{k: np.mean(v) for k, v in total_loss_dict.items() if v})
# Save the model's best checkpoint if performance was improved
es_value = np.mean(total_loss_dict[args.es_metric])
# save current model as well
save_model(model, optimizer, checkpoints_dir, suff='')
if (args.es_metric == 'loss' and es_value < es_best) or (args.es_metric == 'iou_sample' and es_value > es_best):
es_best = es_value
save_model(model, optimizer, checkpoints_dir, suff='best')
pickle.dump(args, open(os.path.join(checkpoints_dir, 'args.pkl'), 'wb'))
curr_pat = 0
print('Saved checkpoint.')
else:
curr_pat += 1
if curr_pat > args.patience:
break
if args.tensorboard:
logger.close()
if __name__ == '__main__':
args = get_parser()
torch.manual_seed(1234)
torch.cuda.manual_seed(1234)
random.seed(1234)
np.random.seed(1234)
main(args)