Spaces:
Configuration error
Configuration error
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
from args import get_parser | |
import torch | |
import torch.nn as nn | |
import torch.autograd as autograd | |
import numpy as np | |
import os | |
import random | |
import pickle | |
from data_loader import get_loader | |
from build_vocab import Vocabulary | |
from model import get_model | |
from torchvision import transforms | |
import sys | |
import json | |
import time | |
import torch.backends.cudnn as cudnn | |
from utils.tb_visualizer import Visualizer | |
from model import mask_from_eos, label2onehot | |
from utils.metrics import softIoU, compute_metrics, update_error_types | |
import random | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
map_loc = None if torch.cuda.is_available() else 'cpu' | |
def merge_models(args, model, ingr_vocab_size, instrs_vocab_size): | |
load_args = pickle.load(open(os.path.join(args.save_dir, args.project_name, | |
args.transfer_from, 'checkpoints/args.pkl'), 'rb')) | |
model_ingrs = get_model(load_args, ingr_vocab_size, instrs_vocab_size) | |
model_path = os.path.join(args.save_dir, args.project_name, args.transfer_from, 'checkpoints', 'modelbest.ckpt') | |
# Load the trained model parameters | |
model_ingrs.load_state_dict(torch.load(model_path, map_location=map_loc)) | |
model.ingredient_decoder = model_ingrs.ingredient_decoder | |
args.transf_layers_ingrs = load_args.transf_layers_ingrs | |
args.n_att_ingrs = load_args.n_att_ingrs | |
return args, model | |
def save_model(model, optimizer, checkpoints_dir, suff=''): | |
if torch.cuda.device_count() > 1: | |
torch.save(model.module.state_dict(), os.path.join( | |
checkpoints_dir, 'model' + suff + '.ckpt')) | |
else: | |
torch.save(model.state_dict(), os.path.join( | |
checkpoints_dir, 'model' + suff + '.ckpt')) | |
torch.save(optimizer.state_dict(), os.path.join( | |
checkpoints_dir, 'optim' + suff + '.ckpt')) | |
def count_parameters(model): | |
return sum(p.numel() for p in model.parameters() if p.requires_grad) | |
def set_lr(optimizer, decay_factor): | |
for group in optimizer.param_groups: | |
group['lr'] = group['lr']*decay_factor | |
def make_dir(d): | |
if not os.path.exists(d): | |
os.makedirs(d) | |
def main(args): | |
# Create model directory & other aux folders for logging | |
where_to_save = os.path.join(args.save_dir, args.project_name, args.model_name) | |
checkpoints_dir = os.path.join(where_to_save, 'checkpoints') | |
logs_dir = os.path.join(where_to_save, 'logs') | |
tb_logs = os.path.join(args.save_dir, args.project_name, 'tb_logs', args.model_name) | |
make_dir(where_to_save) | |
make_dir(logs_dir) | |
make_dir(checkpoints_dir) | |
make_dir(tb_logs) | |
if args.tensorboard: | |
logger = Visualizer(tb_logs, name='visual_results') | |
# check if we want to resume from last checkpoint of current model | |
if args.resume: | |
args = pickle.load(open(os.path.join(checkpoints_dir, 'args.pkl'), 'rb')) | |
args.resume = True | |
# logs to disk | |
if not args.log_term: | |
print ("Training logs will be saved to:", os.path.join(logs_dir, 'train.log')) | |
sys.stdout = open(os.path.join(logs_dir, 'train.log'), 'w') | |
sys.stderr = open(os.path.join(logs_dir, 'train.err'), 'w') | |
print(args) | |
pickle.dump(args, open(os.path.join(checkpoints_dir, 'args.pkl'), 'wb')) | |
# patience init | |
curr_pat = 0 | |
# Build data loader | |
data_loaders = {} | |
datasets = {} | |
data_dir = args.recipe1m_dir | |
for split in ['train', 'val']: | |
transforms_list = [transforms.Resize((args.image_size))] | |
if split == 'train': | |
# Image preprocessing, normalization for the pretrained resnet | |
transforms_list.append(transforms.RandomHorizontalFlip()) | |
transforms_list.append(transforms.RandomAffine(degrees=10, translate=(0.1, 0.1))) | |
transforms_list.append(transforms.RandomCrop(args.crop_size)) | |
else: | |
transforms_list.append(transforms.CenterCrop(args.crop_size)) | |
transforms_list.append(transforms.ToTensor()) | |
transforms_list.append(transforms.Normalize((0.485, 0.456, 0.406), | |
(0.229, 0.224, 0.225))) | |
transform = transforms.Compose(transforms_list) | |
max_num_samples = max(args.max_eval, args.batch_size) if split == 'val' else -1 | |
data_loaders[split], datasets[split] = get_loader(data_dir, args.aux_data_dir, split, | |
args.maxseqlen, | |
args.maxnuminstrs, | |
args.maxnumlabels, | |
args.maxnumims, | |
transform, args.batch_size, | |
shuffle=split == 'train', num_workers=args.num_workers, | |
drop_last=True, | |
max_num_samples=max_num_samples, | |
use_lmdb=args.use_lmdb, | |
suff=args.suff) | |
ingr_vocab_size = datasets[split].get_ingrs_vocab_size() | |
instrs_vocab_size = datasets[split].get_instrs_vocab_size() | |
# Build the model | |
model = get_model(args, ingr_vocab_size, instrs_vocab_size) | |
keep_cnn_gradients = False | |
decay_factor = 1.0 | |
# add model parameters | |
if args.ingrs_only: | |
params = list(model.ingredient_decoder.parameters()) | |
elif args.recipe_only: | |
params = list(model.recipe_decoder.parameters()) + list(model.ingredient_encoder.parameters()) | |
else: | |
params = list(model.recipe_decoder.parameters()) + list(model.ingredient_decoder.parameters()) \ | |
+ list(model.ingredient_encoder.parameters()) | |
# only train the linear layer in the encoder if we are not transfering from another model | |
if args.transfer_from == '': | |
params += list(model.image_encoder.linear.parameters()) | |
params_cnn = list(model.image_encoder.resnet.parameters()) | |
print ("CNN params:", sum(p.numel() for p in params_cnn if p.requires_grad)) | |
print ("decoder params:", sum(p.numel() for p in params if p.requires_grad)) | |
# start optimizing cnn from the beginning | |
if params_cnn is not None and args.finetune_after == 0: | |
optimizer = torch.optim.Adam([{'params': params}, {'params': params_cnn, | |
'lr': args.learning_rate*args.scale_learning_rate_cnn}], | |
lr=args.learning_rate, weight_decay=args.weight_decay) | |
keep_cnn_gradients = True | |
print ("Fine tuning resnet") | |
else: | |
optimizer = torch.optim.Adam(params, lr=args.learning_rate) | |
if args.resume: | |
model_path = os.path.join(args.save_dir, args.project_name, args.model_name, 'checkpoints', 'model.ckpt') | |
optim_path = os.path.join(args.save_dir, args.project_name, args.model_name, 'checkpoints', 'optim.ckpt') | |
optimizer.load_state_dict(torch.load(optim_path, map_location=map_loc)) | |
for state in optimizer.state.values(): | |
for k, v in state.items(): | |
if isinstance(v, torch.Tensor): | |
state[k] = v.to(device) | |
model.load_state_dict(torch.load(model_path, map_location=map_loc)) | |
if args.transfer_from != '': | |
# loads CNN encoder from transfer_from model | |
model_path = os.path.join(args.save_dir, args.project_name, args.transfer_from, 'checkpoints', 'modelbest.ckpt') | |
pretrained_dict = torch.load(model_path, map_location=map_loc) | |
pretrained_dict = {k: v for k, v in pretrained_dict.items() if 'encoder' in k} | |
model.load_state_dict(pretrained_dict, strict=False) | |
args, model = merge_models(args, model, ingr_vocab_size, instrs_vocab_size) | |
if device != 'cpu' and torch.cuda.device_count() > 1: | |
model = nn.DataParallel(model) | |
model = model.to(device) | |
cudnn.benchmark = True | |
if not hasattr(args, 'current_epoch'): | |
args.current_epoch = 0 | |
es_best = 10000 if args.es_metric == 'loss' else 0 | |
# Train the model | |
start = args.current_epoch | |
for epoch in range(start, args.num_epochs): | |
# save current epoch for resuming | |
if args.tensorboard: | |
logger.reset() | |
args.current_epoch = epoch | |
# increase / decrase values for moving params | |
if args.decay_lr: | |
frac = epoch // args.lr_decay_every | |
decay_factor = args.lr_decay_rate ** frac | |
new_lr = args.learning_rate*decay_factor | |
print ('Epoch %d. lr: %.5f'%(epoch, new_lr)) | |
set_lr(optimizer, decay_factor) | |
if args.finetune_after != -1 and args.finetune_after < epoch \ | |
and not keep_cnn_gradients and params_cnn is not None: | |
print("Starting to fine tune CNN") | |
# start with learning rates as they were (if decayed during training) | |
optimizer = torch.optim.Adam([{'params': params}, | |
{'params': params_cnn, | |
'lr': decay_factor*args.learning_rate*args.scale_learning_rate_cnn}], | |
lr=decay_factor*args.learning_rate) | |
keep_cnn_gradients = True | |
for split in ['train', 'val']: | |
if split == 'train': | |
model.train() | |
else: | |
model.eval() | |
total_step = len(data_loaders[split]) | |
loader = iter(data_loaders[split]) | |
total_loss_dict = {'recipe_loss': [], 'ingr_loss': [], | |
'eos_loss': [], 'loss': [], | |
'iou': [], 'perplexity': [], 'iou_sample': [], | |
'f1': [], | |
'card_penalty': []} | |
error_types = {'tp_i': 0, 'fp_i': 0, 'fn_i': 0, 'tn_i': 0, | |
'tp_all': 0, 'fp_all': 0, 'fn_all': 0} | |
torch.cuda.synchronize() | |
start = time.time() | |
for i in range(total_step): | |
img_inputs, captions, ingr_gt, img_ids, paths = loader.next() | |
ingr_gt = ingr_gt.to(device) | |
img_inputs = img_inputs.to(device) | |
captions = captions.to(device) | |
true_caps_batch = captions.clone()[:, 1:].contiguous() | |
loss_dict = {} | |
if split == 'val': | |
with torch.no_grad(): | |
losses = model(img_inputs, captions, ingr_gt) | |
if not args.recipe_only: | |
outputs = model(img_inputs, captions, ingr_gt, sample=True) | |
ingr_ids_greedy = outputs['ingr_ids'] | |
mask = mask_from_eos(ingr_ids_greedy, eos_value=0, mult_before=False) | |
ingr_ids_greedy[mask == 0] = ingr_vocab_size-1 | |
pred_one_hot = label2onehot(ingr_ids_greedy, ingr_vocab_size-1) | |
target_one_hot = label2onehot(ingr_gt, ingr_vocab_size-1) | |
iou_sample = softIoU(pred_one_hot, target_one_hot) | |
iou_sample = iou_sample.sum() / (torch.nonzero(iou_sample.data).size(0) + 1e-6) | |
loss_dict['iou_sample'] = iou_sample.item() | |
update_error_types(error_types, pred_one_hot, target_one_hot) | |
del outputs, pred_one_hot, target_one_hot, iou_sample | |
else: | |
losses = model(img_inputs, captions, ingr_gt, | |
keep_cnn_gradients=keep_cnn_gradients) | |
if not args.ingrs_only: | |
recipe_loss = losses['recipe_loss'] | |
recipe_loss = recipe_loss.view(true_caps_batch.size()) | |
non_pad_mask = true_caps_batch.ne(instrs_vocab_size - 1).float() | |
recipe_loss = torch.sum(recipe_loss*non_pad_mask, dim=-1) / torch.sum(non_pad_mask, dim=-1) | |
perplexity = torch.exp(recipe_loss) | |
recipe_loss = recipe_loss.mean() | |
perplexity = perplexity.mean() | |
loss_dict['recipe_loss'] = recipe_loss.item() | |
loss_dict['perplexity'] = perplexity.item() | |
else: | |
recipe_loss = 0 | |
if not args.recipe_only: | |
ingr_loss = losses['ingr_loss'] | |
ingr_loss = ingr_loss.mean() | |
loss_dict['ingr_loss'] = ingr_loss.item() | |
eos_loss = losses['eos_loss'] | |
eos_loss = eos_loss.mean() | |
loss_dict['eos_loss'] = eos_loss.item() | |
iou_seq = losses['iou'] | |
iou_seq = iou_seq.mean() | |
loss_dict['iou'] = iou_seq.item() | |
card_penalty = losses['card_penalty'].mean() | |
loss_dict['card_penalty'] = card_penalty.item() | |
else: | |
ingr_loss, eos_loss, card_penalty = 0, 0, 0 | |
loss = args.loss_weight[0] * recipe_loss + args.loss_weight[1] * ingr_loss \ | |
+ args.loss_weight[2]*eos_loss + args.loss_weight[3]*card_penalty | |
loss_dict['loss'] = loss.item() | |
for key in loss_dict.keys(): | |
total_loss_dict[key].append(loss_dict[key]) | |
if split == 'train': | |
model.zero_grad() | |
loss.backward() | |
optimizer.step() | |
# Print log info | |
if args.log_step != -1 and i % args.log_step == 0: | |
elapsed_time = time.time()-start | |
lossesstr = "" | |
for k in total_loss_dict.keys(): | |
if len(total_loss_dict[k]) == 0: | |
continue | |
this_one = "%s: %.4f" % (k, np.mean(total_loss_dict[k][-args.log_step:])) | |
lossesstr += this_one + ', ' | |
# this only displays nll loss on captions, the rest of losses will be in tensorboard logs | |
strtoprint = 'Split: %s, Epoch [%d/%d], Step [%d/%d], Losses: %sTime: %.4f' % (split, epoch, | |
args.num_epochs, i, | |
total_step, | |
lossesstr, | |
elapsed_time) | |
print(strtoprint) | |
if args.tensorboard: | |
# logger.histo_summary(model=model, step=total_step * epoch + i) | |
logger.scalar_summary(mode=split+'_iter', epoch=total_step*epoch+i, | |
**{k: np.mean(v[-args.log_step:]) for k, v in total_loss_dict.items() if v}) | |
torch.cuda.synchronize() | |
start = time.time() | |
del loss, losses, captions, img_inputs | |
if split == 'val' and not args.recipe_only: | |
ret_metrics = {'accuracy': [], 'f1': [], 'jaccard': [], 'f1_ingredients': [], 'dice': []} | |
compute_metrics(ret_metrics, error_types, | |
['accuracy', 'f1', 'jaccard', 'f1_ingredients', 'dice'], eps=1e-10, | |
weights=None) | |
total_loss_dict['f1'] = ret_metrics['f1'] | |
if args.tensorboard: | |
# 1. Log scalar values (scalar summary) | |
logger.scalar_summary(mode=split, | |
epoch=epoch, | |
**{k: np.mean(v) for k, v in total_loss_dict.items() if v}) | |
# Save the model's best checkpoint if performance was improved | |
es_value = np.mean(total_loss_dict[args.es_metric]) | |
# save current model as well | |
save_model(model, optimizer, checkpoints_dir, suff='') | |
if (args.es_metric == 'loss' and es_value < es_best) or (args.es_metric == 'iou_sample' and es_value > es_best): | |
es_best = es_value | |
save_model(model, optimizer, checkpoints_dir, suff='best') | |
pickle.dump(args, open(os.path.join(checkpoints_dir, 'args.pkl'), 'wb')) | |
curr_pat = 0 | |
print('Saved checkpoint.') | |
else: | |
curr_pat += 1 | |
if curr_pat > args.patience: | |
break | |
if args.tensorboard: | |
logger.close() | |
if __name__ == '__main__': | |
args = get_parser() | |
torch.manual_seed(1234) | |
torch.cuda.manual_seed(1234) | |
random.seed(1234) | |
np.random.seed(1234) | |
main(args) | |