## Inverse Cooking: Recipe Generation from Food Images Code supporting the paper: *Amaia Salvador, Michal Drozdzal, Xavier Giro-i-Nieto, Adriana Romero. [Inverse Cooking: Recipe Generation from Food Images. ](https://arxiv.org/abs/1812.06164) CVPR 2019* If you find this code useful in your research, please consider citing using the following BibTeX entry: ``` @InProceedings{Salvador2019inversecooking, author = {Salvador, Amaia and Drozdzal, Michal and Giro-i-Nieto, Xavier and Romero, Adriana}, title = {Inverse Cooking: Recipe Generation From Food Images}, booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2019} } ``` ### Installation This code uses Python 3.6 and PyTorch 0.4.1 cuda version 9.0. - Installing PyTorch: ```bash $ conda install pytorch=0.4.1 cuda90 -c pytorch ``` - Install dependencies ```bash $ pip install -r requirements.txt ``` ### Pretrained model - Download ingredient and instruction vocabularies [here](https://dl.fbaipublicfiles.com/inversecooking/ingr_vocab.pkl) and [here](https://dl.fbaipublicfiles.com/inversecooking/instr_vocab.pkl), respectively. - Download pretrained model [here](https://dl.fbaipublicfiles.com/inversecooking/modelbest.ckpt). ### Demo You can use our pretrained model to get recipes for your images. Download the required files (listed above), place them under the ```data``` directory, and try our demo notebook ```src/demo.ipynb```. Note: The demo will run on GPU if a device is found, else it will use CPU. ### Data - Download [Recipe1M](http://im2recipe.csail.mit.edu/dataset/download) (registration required) - Extract files somewhere (we refer to this path as ```path_to_dataset```). - The contents of ```path_to_dataset``` should be the following: ``` det_ingrs.json layer1.json layer2.json images/ images/train images/val images/test ``` *Note: all python calls below must be run from ```./src```* ### Build vocabularies ```bash $ python build_vocab.py --recipe1m_path path_to_dataset ``` ### Images to LMDB (Optional, but recommended) For fast loading during training: ```bash $ python utils/ims2file.py --recipe1m_path path_to_dataset ``` If you decide not to create this file, use the flag ```--load_jpeg``` when training the model. ### Training Create a directory to store checkpoints for all models you train (e.g. ```../checkpoints``` and point ```--save_dir``` to it.) We train our model in two stages: 1. Ingredient prediction from images ```bash python train.py --model_name im2ingr --batch_size 150 --finetune_after 0 --ingrs_only \ --es_metric iou_sample --loss_weight 0 1000.0 1.0 1.0 \ --learning_rate 1e-4 --scale_learning_rate_cnn 1.0 \ --save_dir ../checkpoints --recipe1m_dir path_to_dataset ``` 2. Recipe generation from images and ingredients (loading from 1.) ```bash python train.py --model_name model --batch_size 256 --recipe_only --transfer_from im2ingr \ --save_dir ../checkpoints --recipe1m_dir path_to_dataset ``` Check training progress with Tensorboard from ```../checkpoints```: ```bash $ tensorboard --logdir='../tb_logs' --port=6006 ``` ### Evaluation - Save generated recipes to disk with ```python sample.py --model_name model --save_dir ../checkpoints --recipe1m_dir path_to_dataset --greedy --eval_split test```. - This script will return ingredient metrics (F1 and IoU) ### License inversecooking is released under MIT license, see [LICENSE](LICENSE.md) for details.