from PIL import Image import requests import pickle from io import BytesIO import gradio as gr from src.args import get_parser from src.model import get_model import torch import os from src.model1_inf import im2ingr import numpy as np response = requests.get("https://i.imgur.com/DwR24EM.jpeg") dog_img = Image.open(BytesIO(response.content)) def img2ingr(image): # img_file = '../data/demo_imgs/1.jpg' # image = Image.open(img_file).convert('RGB') img = Image.fromarray(np.uint8(image)).convert('RGB') ingr = im2ingr(img, ingrs_vocab, model) return ' '.join(ingr) def img_ingr2recipe(image, ingr): print(image.shape, ingr) return dog_img, "A delicious meme dog \n--------\n1. Cook it!\n2. GL&HF" def change_checkbox(predicted_ingr): return gr.update(label="Ingredient required", interactive=True, choices=predicted_ingr.split(), value=predicted_ingr.split()) def add_ingr(new_ingr): print(new_ingr) return "hello" def add_to_checkbox(old_ingr, new_ingr): # chack if in dict or not return gr.update(label="Ingredient required", interactive=True, choices=[*old_ingr, new_ingr], value=[*old_ingr, new_ingr]) """ load model1 """ args = get_parser() # basic parameters model_dir = './data' data_dir = './data' example_dir = './data/demo_imgs/' device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') map_loc = None if torch.cuda.is_available() else 'cpu' # load ingredients vocab ingrs_vocab = pickle.load(open(os.path.join(model_dir, 'ingr_vocab.pkl'), 'rb')) vocab = pickle.load(open(os.path.join(data_dir, 'instr_vocab.pkl'), 'rb')) ingr_vocab_size = len(ingrs_vocab) instrs_vocab_size = len(vocab) # model setting and loading args.maxseqlen = 15 args.ingrs_only=True model = get_model(args, ingr_vocab_size, instrs_vocab_size) model_path = os.path.join(model_dir, 'modelbest.ckpt') model.load_state_dict(torch.load(model_path, map_location=map_loc)) model.to(device) model.eval() model.ingrs_only = True model.recipe_only = False """ load model2 """ """ gradio """ # input image -> list all required ingrs -> checkbox for selecting ingrs / input_box for input more ingrs user want -> output: recipe and its image with gr.Blocks() as demo: gr.Markdown( """ # Recipedia Start finding the yummy recipe ... """) with gr.Tabs(): with gr.TabItem("User"): # input image image_input = gr.Image(label="Upload the image of your yummy food", type='filepath') gr.Examples(examples=[example_dir+"1.jpg", example_dir+"2.jpg", example_dir+"3.jpg", example_dir+"4.jpg", example_dir+"5.jpg", example_dir+"6.jpg"], inputs=image_input) with gr.Row(): # clear_img_btn = gr.Button("Clear") image_btn = gr.Button("Upload", variant="primary") # list all required ingrs -> checkbox for selecting ingrs / input_box for input more ingrs user want predicted_ingr = gr.Textbox(visible=False) with gr.Row(): checkboxes = gr.CheckboxGroup(label="Ingredient required", interactive=True) new_ingr = gr.Textbox(label="Addtional ingredients", max_lines=1) # with gr.Row(): # new_btn_clear = gr.Button("Clear") # new_btn = gr.Button("Add", variant="primary") add_ingr = gr.Textbox(visible=False) with gr.Row(): clear_ingr_btn = gr.Button("Reset") ingr_btn = gr.Button("Confirm", variant="primary") # output: recipe and its image with gr.Row(): out_recipe = gr.Textbox(label="Your recipe", value="Spagetti ---\n1. cook it!") out_image = gr.Image(label="Looks yummy ><") with gr.TabItem("Example"): image_button = gr.Button("Flip") image_btn.click(img2ingr, inputs=image_input, outputs=predicted_ingr) predicted_ingr.change(fn=change_checkbox, inputs=predicted_ingr, outputs=checkboxes) # new_btn.click(img2ingr, inputs=new_ingr, outputs=predicted_ingr) new_ingr.submit(fn=add_to_checkbox, inputs=[checkboxes, new_ingr], outputs=checkboxes) ingr_btn.click(img_ingr2recipe, inputs=[image_input, checkboxes], outputs=[out_image, out_recipe]) demo.launch(debug=True, share=True)