|
import gradio as gr |
|
import numpy as np |
|
import time |
|
import math |
|
import random |
|
import torch |
|
|
|
from diffusers import StableDiffusionXLInpaintPipeline |
|
from PIL import Image, ImageFilter |
|
|
|
max_64_bit_int = 2**63 - 1 |
|
|
|
if torch.cuda.is_available(): |
|
device = "cuda" |
|
floatType = torch.float16 |
|
variant = "fp16" |
|
else: |
|
device = "cpu" |
|
floatType = torch.float32 |
|
variant = None |
|
|
|
pipe = StableDiffusionXLInpaintPipeline.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype = floatType, variant = variant) |
|
pipe = pipe.to(device) |
|
|
|
def update_seed(is_randomize_seed, seed): |
|
if is_randomize_seed: |
|
return random.randint(0, max_64_bit_int) |
|
return seed |
|
|
|
def toggle_debug(is_debug_mode): |
|
return [gr.update(visible = is_debug_mode)] * 3 |
|
|
|
def noise_color(color, noise): |
|
return color + random.randint(- noise, noise) |
|
|
|
def check( |
|
input_image, |
|
enlarge_top, |
|
enlarge_right, |
|
enlarge_bottom, |
|
enlarge_left, |
|
prompt, |
|
negative_prompt, |
|
smooth_border, |
|
num_inference_steps, |
|
guidance_scale, |
|
image_guidance_scale, |
|
strength, |
|
denoising_steps, |
|
is_randomize_seed, |
|
seed, |
|
debug_mode, |
|
progress = gr.Progress()): |
|
if input_image is None: |
|
raise gr.Error("Please provide an image.") |
|
|
|
if prompt is None or prompt == "": |
|
raise gr.Error("Please provide a prompt input.") |
|
|
|
if (not (enlarge_top is None)) and enlarge_top < 0: |
|
raise gr.Error("Please provide positive top margin.") |
|
|
|
if (not (enlarge_right is None)) and enlarge_right < 0: |
|
raise gr.Error("Please provide positive right margin.") |
|
|
|
if (not (enlarge_bottom is None)) and enlarge_bottom < 0: |
|
raise gr.Error("Please provide positive bottom margin.") |
|
|
|
if (not (enlarge_left is None)) and enlarge_left < 0: |
|
raise gr.Error("Please provide positive left margin.") |
|
|
|
if ( |
|
(enlarge_top is None or enlarge_top == 0) |
|
and (enlarge_right is None or enlarge_right == 0) |
|
and (enlarge_bottom is None or enlarge_bottom == 0) |
|
and (enlarge_left is None or enlarge_left == 0) |
|
): |
|
raise gr.Error("At least one border must be enlarged.") |
|
|
|
def uncrop( |
|
input_image, |
|
enlarge_top, |
|
enlarge_right, |
|
enlarge_bottom, |
|
enlarge_left, |
|
prompt, |
|
negative_prompt, |
|
smooth_border, |
|
num_inference_steps, |
|
guidance_scale, |
|
image_guidance_scale, |
|
strength, |
|
denoising_steps, |
|
is_randomize_seed, |
|
seed, |
|
debug_mode, |
|
progress = gr.Progress()): |
|
check( |
|
input_image, |
|
enlarge_top, |
|
enlarge_right, |
|
enlarge_bottom, |
|
enlarge_left, |
|
prompt, |
|
negative_prompt, |
|
smooth_border, |
|
num_inference_steps, |
|
guidance_scale, |
|
image_guidance_scale, |
|
strength, |
|
denoising_steps, |
|
is_randomize_seed, |
|
seed, |
|
debug_mode |
|
) |
|
start = time.time() |
|
progress(0, desc = "Preparing data...") |
|
|
|
if enlarge_top is None or enlarge_top == "": |
|
enlarge_top = 0 |
|
|
|
if enlarge_right is None or enlarge_right == "": |
|
enlarge_right = 0 |
|
|
|
if enlarge_bottom is None or enlarge_bottom == "": |
|
enlarge_bottom = 0 |
|
|
|
if enlarge_left is None or enlarge_left == "": |
|
enlarge_left = 0 |
|
|
|
if negative_prompt is None: |
|
negative_prompt = "" |
|
|
|
if smooth_border is None: |
|
smooth_border = 0 |
|
|
|
if num_inference_steps is None: |
|
num_inference_steps = 50 |
|
|
|
if guidance_scale is None: |
|
guidance_scale = 7 |
|
|
|
if image_guidance_scale is None: |
|
image_guidance_scale = 1.5 |
|
|
|
if strength is None: |
|
strength = 0.99 |
|
|
|
if denoising_steps is None: |
|
denoising_steps = 1000 |
|
|
|
if seed is None: |
|
seed = random.randint(0, max_64_bit_int) |
|
|
|
random.seed(seed) |
|
torch.manual_seed(seed) |
|
|
|
original_height, original_width, original_channel = np.array(input_image).shape |
|
output_width = enlarge_left + original_width + enlarge_right |
|
output_height = enlarge_top + original_height + enlarge_bottom |
|
|
|
|
|
enlarged_image = Image.new(mode = input_image.mode, size = (original_width, original_height), color = "black") |
|
enlarged_image.paste(input_image, (0, 0)) |
|
enlarged_image = enlarged_image.resize((output_width, output_height)) |
|
enlarged_image = enlarged_image.filter(ImageFilter.BoxBlur(20)) |
|
|
|
enlarged_image.paste(input_image, (enlarge_left, enlarge_top)) |
|
|
|
horizontally_mirrored_input_image = input_image.transpose(Image.FLIP_LEFT_RIGHT).resize((original_width * 2, original_height)) |
|
enlarged_image.paste(horizontally_mirrored_input_image, (enlarge_left - (original_width * 2), enlarge_top)) |
|
enlarged_image.paste(horizontally_mirrored_input_image, (enlarge_left + original_width, enlarge_top)) |
|
|
|
vertically_mirrored_input_image = input_image.transpose(Image.FLIP_TOP_BOTTOM).resize((original_width, original_height * 2)) |
|
enlarged_image.paste(vertically_mirrored_input_image, (enlarge_left, enlarge_top - (original_height * 2))) |
|
enlarged_image.paste(vertically_mirrored_input_image, (enlarge_left, enlarge_top + original_height)) |
|
|
|
returned_input_image = input_image.transpose(Image.ROTATE_180).resize((original_width * 2, original_height * 2)) |
|
enlarged_image.paste(returned_input_image, (enlarge_left - (original_width * 2), enlarge_top - (original_height * 2))) |
|
enlarged_image.paste(returned_input_image, (enlarge_left - (original_width * 2), enlarge_top + original_height)) |
|
enlarged_image.paste(returned_input_image, (enlarge_left + original_width, enlarge_top - (original_height * 2))) |
|
enlarged_image.paste(returned_input_image, (enlarge_left + original_width, enlarge_top + original_height)) |
|
|
|
enlarged_image = enlarged_image.filter(ImageFilter.BoxBlur(20)) |
|
|
|
|
|
noise_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = "black") |
|
enlarged_pixels = enlarged_image.load() |
|
|
|
for i in range(output_width): |
|
for j in range(output_height): |
|
enlarged_pixel = enlarged_pixels[i, j] |
|
noise = min(max(enlarge_left - i, i - (enlarge_left + original_width), enlarge_top - j, j - (enlarge_top + original_height), 0), 255) |
|
noise_image.putpixel((i, j), (noise_color(enlarged_pixel[0], noise), noise_color(enlarged_pixel[1], noise), noise_color(enlarged_pixel[2], noise), 255)) |
|
|
|
enlarged_image.paste(noise_image, (0, 0)) |
|
enlarged_image.paste(input_image, (enlarge_left, enlarge_top)) |
|
|
|
|
|
mask_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = (255, 255, 255, 0)) |
|
black_mask = Image.new(mode = input_image.mode, size = (original_width - smooth_border, original_height - smooth_border), color = (0, 0, 0, 0)) |
|
mask_image.paste(black_mask, (enlarge_left + (smooth_border // 2), enlarge_top + (smooth_border // 2))) |
|
mask_image = mask_image.filter(ImageFilter.BoxBlur((smooth_border // 2))) |
|
|
|
|
|
if 1024 * 1024 < output_width * output_height: |
|
factor = ((1024 * 1024) / (output_width * output_height))**0.5 |
|
process_width = math.floor(output_width * factor) |
|
process_height = math.floor(output_height * factor) |
|
|
|
limitation = " Due to technical limitation, the image have been downscaled and then upscaled."; |
|
else: |
|
process_width = output_width |
|
process_height = output_height |
|
|
|
limitation = ""; |
|
|
|
|
|
if (process_width % 8) != 0 or (process_height % 8) != 0: |
|
if ((process_width - (process_width % 8) + 8) * (process_height - (process_height % 8) + 8)) <= (1024 * 1024): |
|
process_width = process_width - (process_width % 8) + 8 |
|
process_height = process_height - (process_height % 8) + 8 |
|
elif (process_height % 8) <= (process_width % 8) and ((process_width - (process_width % 8) + 8) * process_height) <= (1024 * 1024): |
|
process_width = process_width - (process_width % 8) + 8 |
|
process_height = process_height - (process_height % 8) |
|
elif (process_width % 8) <= (process_height % 8) and (process_width * (process_height - (process_height % 8) + 8)) <= (1024 * 1024): |
|
process_width = process_width - (process_width % 8) |
|
process_height = process_height - (process_height % 8) + 8 |
|
else: |
|
process_width = process_width - (process_width % 8) |
|
process_height = process_height - (process_height % 8) |
|
|
|
progress(None, desc = "Processing...") |
|
|
|
output_image = pipe( |
|
seeds = [seed], |
|
width = process_width, |
|
height = process_height, |
|
prompt = prompt, |
|
negative_prompt = negative_prompt, |
|
image = enlarged_image, |
|
mask_image = mask_image, |
|
num_inference_steps = num_inference_steps, |
|
guidance_scale = guidance_scale, |
|
image_guidance_scale = image_guidance_scale, |
|
strength = strength, |
|
denoising_steps = denoising_steps, |
|
show_progress_bar = True |
|
).images[0] |
|
|
|
if limitation != "": |
|
output_image = output_image.resize((output_width, output_height)) |
|
|
|
if debug_mode == False: |
|
input_image = None |
|
enlarged_image = None |
|
mask_image = None |
|
|
|
end = time.time() |
|
secondes = int(end - start) |
|
minutes = math.floor(secondes / 60) |
|
secondes = secondes - (minutes * 60) |
|
hours = math.floor(minutes / 60) |
|
minutes = minutes - (hours * 60) |
|
return [ |
|
output_image, |
|
("Start again to get a different result. " if is_randomize_seed else "") + "The new image is " + str(output_width) + " pixels large and " + str(output_height) + " pixels high, so an image of " + f'{output_width * output_height:,}' + " pixels. The image has been generated in " + ((str(hours) + " h, ") if hours != 0 else "") + ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + str(secondes) + " sec." + limitation, |
|
input_image, |
|
enlarged_image, |
|
mask_image |
|
] |
|
|
|
with gr.Blocks() as interface: |
|
gr.HTML( |
|
""" |
|
<h1 style="text-align: center;">Outpainting demo</h1> |
|
<p style="text-align: center;">Enlarges the point of view of your image, freely, without account, without watermark, without installation, which can be downloaded</p> |
|
<br/> |
|
<br/> |
|
✨ Powered by <i>SDXL 1.0</i> artificial intellingence. |
|
<br/> |
|
💻 Your computer must <u>not</u> enter into standby mode.<br/>You can duplicate this space on a free account, it works on CPU and CUDA.<br/> |
|
<a href='https://huggingface.co/spaces/clinteroni/outpainting-with-differential-diffusion-demo?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a> |
|
<br/> |
|
⚖️ You can use, modify and share the generated images but not for commercial uses. |
|
|
|
""" |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
dummy_1 = gr.Label(visible = False) |
|
with gr.Column(): |
|
enlarge_top = gr.Number(minimum = 0, value = 64, precision = 0, label = "Uncrop on top ⬆️", info = "in pixels") |
|
with gr.Column(): |
|
dummy_2 = gr.Label(visible = False) |
|
with gr.Row(): |
|
with gr.Column(): |
|
enlarge_left = gr.Number(minimum = 0, value = 64, precision = 0, label = "Uncrop on left ⬅️", info = "in pixels") |
|
with gr.Column(): |
|
input_image = gr.Image(label = "Your image", sources = ["upload", "webcam", "clipboard"], type = "pil") |
|
with gr.Column(): |
|
enlarge_right = gr.Number(minimum = 0, value = 64, precision = 0, label = "Uncrop on right ➡️", info = "in pixels") |
|
with gr.Row(): |
|
with gr.Column(): |
|
dummy_3 = gr.Label(visible = False) |
|
with gr.Column(): |
|
enlarge_bottom = gr.Number(minimum = 0, value = 64, precision = 0, label = "Uncrop on bottom ⬇️", info = "in pixels") |
|
with gr.Column(): |
|
dummy_4 = gr.Label(visible = False) |
|
with gr.Row(): |
|
prompt = gr.Textbox(label = "Prompt", info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = "Describe what you want to see in the entire image", lines = 2) |
|
with gr.Row(): |
|
with gr.Accordion("Advanced options", open = False): |
|
negative_prompt = gr.Textbox(label = "Negative prompt", placeholder = "Describe what you do NOT want to see in the entire image", value = 'Border, frame, painting, scribbling, smear, noise, blur, watermark') |
|
smooth_border = gr.Slider(minimum = 0, maximum = 1024, value = 0, step = 2, label = "Smooth border", info = "lower=preserve original, higher=seamless") |
|
num_inference_steps = gr.Slider(minimum = 10, maximum = 100, value = 50, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality") |
|
guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt") |
|
image_guidance_scale = gr.Slider(minimum = 1, value = 1.5, step = 0.1, label = "Image Guidance Scale", info = "lower=image quality, higher=follow the image") |
|
strength = gr.Slider(value = 0.99, minimum = 0.01, maximum = 1.0, step = 0.01, label = "Strength", info = "lower=follow the original area (discouraged), higher=redraw from scratch") |
|
denoising_steps = gr.Number(minimum = 0, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result") |
|
randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different") |
|
seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed") |
|
debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results") |
|
|
|
with gr.Row(): |
|
submit = gr.Button("🚀 Outpaint", variant = "primary") |
|
|
|
with gr.Row(): |
|
uncropped_image = gr.Image(label = "Outpainted image") |
|
with gr.Row(): |
|
information = gr.HTML() |
|
with gr.Row(): |
|
original_image = gr.Image(label = "Original image", visible = False) |
|
with gr.Row(): |
|
enlarged_image = gr.Image(label = "Enlarged image", visible = False) |
|
with gr.Row(): |
|
mask_image = gr.Image(label = "Mask image", visible = False) |
|
|
|
submit.click(fn = update_seed, inputs = [ |
|
randomize_seed, |
|
seed |
|
], outputs = [ |
|
seed |
|
], queue = False, show_progress = False).then(toggle_debug, debug_mode, [ |
|
original_image, |
|
enlarged_image, |
|
mask_image |
|
], queue = False, show_progress = False).then(check, inputs = [ |
|
input_image, |
|
enlarge_top, |
|
enlarge_right, |
|
enlarge_bottom, |
|
enlarge_left, |
|
prompt, |
|
negative_prompt, |
|
smooth_border, |
|
num_inference_steps, |
|
guidance_scale, |
|
image_guidance_scale, |
|
strength, |
|
denoising_steps, |
|
randomize_seed, |
|
seed, |
|
debug_mode |
|
], outputs = [], queue = False, |
|
show_progress = False).success(uncrop, inputs = [ |
|
input_image, |
|
enlarge_top, |
|
enlarge_right, |
|
enlarge_bottom, |
|
enlarge_left, |
|
prompt, |
|
negative_prompt, |
|
smooth_border, |
|
num_inference_steps, |
|
guidance_scale, |
|
image_guidance_scale, |
|
strength, |
|
denoising_steps, |
|
randomize_seed, |
|
seed, |
|
debug_mode |
|
], outputs = [ |
|
uncropped_image, |
|
information, |
|
original_image, |
|
enlarged_image, |
|
mask_image |
|
], scroll_to_output = True) |
|
|
|
gr.Examples( |
|
run_on_click = True, |
|
fn = uncrop, |
|
inputs = [ |
|
input_image, |
|
enlarge_top, |
|
enlarge_right, |
|
enlarge_bottom, |
|
enlarge_left, |
|
prompt, |
|
negative_prompt, |
|
smooth_border, |
|
num_inference_steps, |
|
guidance_scale, |
|
image_guidance_scale, |
|
strength, |
|
denoising_steps, |
|
randomize_seed, |
|
seed, |
|
debug_mode |
|
], |
|
outputs = [ |
|
uncropped_image, |
|
information, |
|
original_image, |
|
enlarged_image, |
|
mask_image |
|
], |
|
examples = [ |
|
[ |
|
"./examples/Coucang.jpg", |
|
1024, |
|
1024, |
|
1024, |
|
1024, |
|
"A white Coucang, in a tree, ultrarealistic, realistic, photorealistic, 8k, bokeh", |
|
"Border, frame, painting, drawing, cartoon, anime, 3d, scribbling, smear, noise, blur, watermark", |
|
0, |
|
50, |
|
7, |
|
1.5, |
|
0.99, |
|
1000, |
|
False, |
|
123, |
|
False |
|
], |
|
], |
|
cache_examples = False, |
|
) |
|
|
|
gr.Markdown( |
|
""" |
|
## How to prompt your image |
|
|
|
To easily read your prompt, start with the subject, then describ the pose or action, then secondary elements, then the background, then the graphical style, then the image quality: |
|
``` |
|
A Vietnamese woman, red clothes, walking, smilling, in the street, a car on the left, in a modern city, photorealistic, 8k |
|
``` |
|
|
|
You can use round brackets to increase the importance of a part: |
|
``` |
|
A Vietnamese woman, (red clothes), walking, smilling, in the street, a car on the left, in a modern city, photorealistic, 8k |
|
``` |
|
|
|
You can use several levels of round brackets to even more increase the importance of a part: |
|
``` |
|
A Vietnamese woman, ((red clothes)), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k |
|
``` |
|
|
|
You can use number instead of several round brackets: |
|
``` |
|
A Vietnamese woman, (red clothes:1.5), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k |
|
``` |
|
|
|
You can do the same thing with square brackets to decrease the importance of a part: |
|
``` |
|
A [Vietnamese] woman, (red clothes:1.5), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k |
|
``` |
|
|
|
To easily read your negative prompt, organize it the same way as your prompt (not important for the AI): |
|
``` |
|
man, boy, hat, running, tree, bicycle, forest, drawing, painting, cartoon, 3d, monochrome, blurry, noisy, bokeh |
|
``` |
|
|
|
## Credit |
|
The [example image](https://commons.wikimedia.org/wiki/File:Coucang.jpg) is by Aprisonsan |
|
and licensed under CC-BY-SA 4.0 International. |
|
""" |
|
) |
|
|
|
interface.queue().launch() |