Spaces:
Sleeping
Sleeping
File size: 6,105 Bytes
f51b958 7b95471 f51b958 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
# set path
import glob, os, sys; sys.path.append('/src')
#import helper
from src import preprocessing as pre
from src import cleaning as clean
#import needed libraries
import seaborn as sns
from pandas import DataFrame
from keybert import KeyBERT
from transformers import pipeline
import matplotlib.pyplot as plt
import numpy as np
import streamlit as st
import pandas as pd
import tempfile
def app():
with st.container():
st.markdown("<h1 style='text-align: center; color: black;'> Policy Action Tracking</h1>", unsafe_allow_html=True)
st.write(' ')
st.write(' ')
with st.expander("βΉοΈ - About this app", expanded=True):
st.write(
"""
The *Policy Action Tracker* app is an easy-to-use interface built in Streamlit for analyzing policy documents - developed by GIZ Data and the Sustainable Development Solution Network.
It uses a minimal keyword extraction technique that leverages multiple NLP embeddings and relies on [Transformers] (https://huggingface.co/transformers/) π€ to create keywords/keyphrases that are most similar to a document.
"""
)
st.markdown("")
st.markdown("")
st.markdown("## π Step One: Upload document ")
with st.container():
file = st.file_uploader('Upload PDF File', type=['pdf', 'docx', 'txt'])
if file is not None:
with tempfile.NamedTemporaryFile(mode="wb") as temp:
bytes_data = file.getvalue()
temp.write(bytes_data)
st.write("Filename: ", file.name)
# load document
docs = pre.load_document(temp.name, file)
# preprocess document
docs_processed, df, all_text, par_list = clean.preprocessing(docs)
# testing
# st.write(len(all_text))
# for i in par_list:
# st.write(i)
@st.cache(allow_output_mutation=True)
def load_keyBert():
return KeyBERT()
kw_model = load_keyBert()
keywords = kw_model.extract_keywords(
all_text,
keyphrase_ngram_range=(1, 2),
use_mmr=True,
stop_words="english",
top_n=15,
diversity=0.7,
)
st.markdown("## π What is my document about?")
df = (
DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"])
.sort_values(by="Relevancy", ascending=False)
.reset_index(drop=True)
)
df.index += 1
# Add styling
cmGreen = sns.light_palette("green", as_cmap=True)
cmRed = sns.light_palette("red", as_cmap=True)
df = df.style.background_gradient(
cmap=cmGreen,
subset=[
"Relevancy",
],
)
c1, c2, c3 = st.columns([1, 3, 1])
format_dictionary = {
"Relevancy": "{:.1%}",
}
df = df.format(format_dictionary)
with c2:
st.table(df)
######## SDG classiciation
# @st.cache(allow_output_mutation=True)
# def load_sdgClassifier():
# classifier = pipeline("text-classification", model= "../models/osdg_sdg/")
# return classifier
# load from disc (github repo) for performance boost
@st.cache(allow_output_mutation=True)
def load_sdgClassifier():
classifier = pipeline("text-classification", model= "../models/osdg_sdg/")
return classifier
classifier = load_sdgClassifier()
# # not needed, par list comes from pre_processing function already
# word_list = all_text.split()
# len_word_list = len(word_list)
# par_list = []
# par_len = 130
# for i in range(0,len_word_list // par_len):
# string_part = ' '.join(word_list[i*par_len:(i+1)*par_len])
# par_list.append(string_part)
labels = classifier(par_list)
labels_= [(l['label'],l['score']) for l in labels]
df = DataFrame(labels_, columns=["SDG", "Relevancy"])
df['text'] = par_list
df = df.sort_values(by="Relevancy", ascending=False).reset_index(drop=True)
df.index += 1
df =df[df['Relevancy']>.85]
x = df['SDG'].value_counts()
plt.rcParams['font.size'] = 25
colors = plt.get_cmap('Blues')(np.linspace(0.2, 0.7, len(x)))
# plot
fig, ax = plt.subplots()
ax.pie(x, colors=colors, radius=2, center=(4, 4),
wedgeprops={"linewidth": 1, "edgecolor": "white"}, frame=False,labels =list(x.index))
st.markdown("## π Anything related to SDGs?")
c4, c5, c6 = st.columns([5, 7, 1])
# Add styling
cmGreen = sns.light_palette("green", as_cmap=True)
cmRed = sns.light_palette("red", as_cmap=True)
df = df.style.background_gradient(
cmap=cmGreen,
subset=[
"Relevancy",
],
)
format_dictionary = {
"Relevancy": "{:.1%}",
}
df = df.format(format_dictionary)
with c4:
st.pyplot(fig)
with c5:
st.table(df)
|