import streamlit as st from langchain_community.llms import HuggingFaceTextGenInference import os from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.schema import StrOutputParser from custom_llm import CustomLLM, CustomChainWithHistory API_TOKEN = os.getenv('HF_INFER_API') #API_URL = "https://api-inference.huggingface.co/models/gpt2" from typing import Optional from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain_community.chat_models import ChatAnthropic from langchain_core.chat_history import BaseChatMessageHistory from langchain.memory import ConversationBufferMemory from langchain_core.runnables.history import RunnableWithMessageHistory if 'memory' not in st.session_state: st.session_state['memory'] = ConversationBufferMemory(return_messages=True) if 'chain' not in st.session_state: st.session_state['chain'] = CustomChainWithHistory(llm=CustomLLM(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", model_type='text-generation', api_token=API_TOKEN, stop=["\n<|"]), memory=memory) st.title("Chat With Me") st.subheader("by Jonathan Jordan") # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # React to user input if prompt := st.chat_input("Ask me anything.."): # Display user message in chat message container st.chat_message("User").markdown(prompt) # Add user message to chat history st.session_state.messages.append({"role": "User", "content": prompt}) response = st.session_state.chain.invoke({"question":prompt}, config={"configurable": {"session_id": "foobar"}},) # Display assistant response in chat message container with st.chat_message("Jojo"): st.markdown(response) # Add assistant response to chat history st.session_state.messages.append({"role": "Jojo", "content": response})